跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林緯廸
研究生(外文):Lin, Wei-Ti
論文名稱:利用奈米鈀金屬粒子活化於感光型介電材料上進行無電鍍銅金屬化之研究
論文名稱(外文):Application of Electroless Copper Plating on Photo-imageable Dielectric Material by Reactive Palladium Nanoparticles
指導教授:裘性天衛子健
指導教授(外文):Chiu, Hsin-TienWei, Tzu-Chien
口試委員:陳登銘
口試委員(外文):Chen, Teng-Ming
口試日期:2017-08-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:理學院應用科技學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:76
中文關鍵詞:無電鍍銅鈀奈米粒子感光型介電材料金屬化胺基矽烷
外文關鍵詞:E'less Cu PlatingPVA-PdNanoparticlePIDAminosilane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本研究為利用奈米鈀金屬粒子作為無電鍍銅觸媒將感光型介電材料(Photoimageable dielectric, PID)進行金屬化,透過二階段改質的手法搭配新式金屬觸媒,試圖改善無電鍍銅於感光型介電材料上鍍不良及附著力不佳的缺點,並且取代現有乾式真空濺鍍的金屬化方式,成為降低成本並且提升生產效能的解決方案,首先使用半導體標準的RCA-SC1流程或氧氣電漿的方式將PID基板進行第一階段親水化處理,並利用末端含有胺基之矽烷化合物進行表面第二階段改質,使矽烷化合物形成自組裝薄膜層(Self-assembly monolayer, SAM),再利用自行研發之聚乙烯醇保護奈米鈀金屬粒子(Polyvinyl alcohol, PVA-Pd)與矽烷化合物之胺基進行作用,以作為後續無電鍍銅之金屬觸媒並提升其無電鍍銅於PID上之覆蓋率與結合力。
在材料分析的部分,為了確認各階段改質處理對於材料表面的影響以及化學銅的結合力,利用接觸角量測儀(Contact angle measurement)、原子力顯微鏡(Atomic force microscopy, AFM)、掃描式電子顯微鏡(Scanning electron microscopy, SEM)、X射線螢光分析法(X-ray fluorescence analysis, XRF)、X射線光電子能譜儀 (X-ray photoelectron spectroscop, XPS)以及百格刀膠帶測試進行分析。
Electroless-deposition Copper (E’less Cu) is one of most commend technique in electronic package industry. In this work, two step surface modification technique is applied to set up an attachable surface by using RCA-SC1 (standard clean process of semiconductor industry) or radio frequency (RF) power plasma and the 3- 2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) for PVA-Pd attach which as the catalyst of E’less deposition. Applying the catalyst agent developed in previous study and synthesized in the laboratory. Using polyvinyl alcohol (PVA) as protective agent of the palladium nanoparticle with well-define size of 2-5nm. [1] The PID surface modification and the adhesion between PID and e’less Cu is evaluated by water contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray fluorescence analysis (XRF) and cross cut test.
The results showed that using PVA-Pd as catalyst of E’less Cu on PID had better adhesion than commercial Sn/Pd and applying plasma is more suitable method than RCA-SC1 for organic polymer as the surface hydrophilicity modification method. Based on SEM and AFM analysis, one of the factor to enhance the adhesion is that micro-morphology and roughness occurred after plasma process. The XPS analysis showed many functional groups generated after treatment it might be another factor to enhance adhesion performance of E’less Cu on PID.
In the practical application point of view, this study demonstrate “wet process” alternative for PID metallization and try to resolve the mechanism of surface modification.
目錄
摘要 I
Abstract III
誌謝辭 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 文獻回顧 5
2.1 介電材料的發展及沿革 5
2.1.1 非感光型介電材料 6
2.1.2 感光型介電材料 7
2.2 常見的介電材料銅金屬化製程 10
2.2.1 真空濺鍍 10
2.2.2 蒸鍍 10
2.2.3 銅箔壓合 10
2.2.4 無電鍍 11
2.3 無電鍍銅 11
2.3.1 無電鍍基本原理 11
2.3.2 無電鍍銅的基本原理 12
2.3.3 pH值的影響 14
2.4 鈀金屬觸媒 15
2.4.1 膠體錫鈀(Sn/Pd Colloid) 15
2.4.2 離子鈀 15
2.4.3 奈米鈀 16
2.5 矽烷化合物表面改質 19
2.5.1 常見的矽烷化合物 20
2.5.2 矽烷化合物表面改質機制 20
2.6 感光型介電材料的應用與挑戰 24
第三章 實驗 27
3.1 藥品與材料 27
3.2 設備與儀器 28
3.3 量測原理 29
3.3.1 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 29
3.3.2 接觸角量測儀 (Contact angle measurement) 30
3.3.3 原子力顯微鏡 (Atomic force microscope, AFM) 31
3.3.4 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 31
3.3.5 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 33
3.3.6 X射線螢光分析法(X-ray fluorescence analysis, XRF) 33
3.3.7 附著力測試 (百格刀3M膠帶測試) 34
3.4 實驗方法 36
3.4.1 PID基板製備 36
3.4.2 奈米鈀觸媒(PVA-Pd)之製備 36
3.4.3 表面改質與無電鍍銅之沉積 37
3.4.3.1 RCA方法 37
3.4.3.2 電漿前處理效應 43
第四章 結果與討論 48
4.1 前言 48
4.2 實驗結果 50
4.2.1 RCA方法 50
4.2.1.1 RCA+ETAS改質結果 50
4.2.1.2 AFM及SEM形貌分析 52
4.2.1.3 無電鍍銅 54
4.2.1.4 PID與無電鍍銅結合力驗證 55
4.2.2 電漿前處理效應 57
4.2.2.1 電漿處理時間 58
4.2.2.2 電漿+ETAS改質結果 59
4.2.2.3 AFM及SEM形貌分析 61
4.2.2.4 無電鍍銅 64
4.2.2.5 PID與無電鍍銅結合力驗證 66
4.3 結論與未來展望 70
4.3.1 結論 70
4.3.2 未來展望 71
參考文獻 72
參考文獻
[1] 許晉偉, "矽晶圓上高附著性無電鍍鎳磷層之研究," 碩士 碩士論文, 化學工程學系, 國立清華大學, 新竹市, 2016.
[2] K. H. Krishnan, S. John, K. Srinivasan, J. Praveen, M. Ganesan, and P. Kavimani, "An overall aspect of electroless Ni-P depositions—a review article," Metallurgical and Materials Transactions A, vol. 37, no. 6, pp. 1917-1926, 2006.
[3] 林士傑, "應用無電解電鍍與電泳技術於玻璃基板沉積研究," 碩士 碩士論文, 機械與機電工程研究所, 國立中山大學, 高雄市, 2006.
[4] M. Lu, "Wafer level fan-out and embedded technology for potable/wearable/IoT devices," in Semicon Taiwan 2015, Taipei, 2015, p. 23.
[5] W.-Y. Chen, "The challenges and opportunities of advanced packaging materials," Industrial Technology Research Institute (ITRI) 2014.
[6] 潘扶民. (2001). 為什麼IC產業須要研究低介電材料(low-k). Available: http://web.it.nctu.edu.tw/~FMPANLAB/LowK.htm
[7] 江昇, "超音波照射應用於積體電路銅製程之作用機制探討," 碩士 碩士論文, 化學工程系, 南台科技大學, 台南市, 2004.
[8] 李來助. (民 87 年) ULSI 超大型積體電路之銅導線技術. 電子材料. 85-92.
[9] E. Liew et al., "Signal transmission loss due to copper surface roughness in high-frequency region," in IPC APEX EXPO 2014: New Ideas For New Horizons, 2014: IPC-Association Connecting Electronics Industries.
[10] D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, "Low-k dielectric materials," Materials Today, vol. 7, no. 1, pp. 34-39, 2004.
[11] M. Tarr. (2007). High-density interconnect. Available: http://www.mtarr.co.uk/courses/topics/0262_hdi/index.html
[12] K. J. Puttlitz and P. A. Totta, "Laminate/HDI Dei Carrier," in Area array interconnection handbook: Springer Science & Business Media, 2001, pp. 285-288.
[13] J. H. Lau and S. W. R. Lee, "Microvias by photoimaging," in Microvias: For Low Cost, High Density InterconnectsNew York, NY: McGraw-Hill, 2001, pp. 163-165.
[14] M. Kurosawa. (2012). Laser drilling high-density printed circuit boards. Available: http://www.industrial-lasers.com/articles/print/volume-27/issue-05/features/laser-drilling-high-density-printed-circuit-boards.html
[15] S. Sikorski and B. Petrov. (2016). STATS ChipPAC reaping the FO WLP seeds, ready with SiP portfolio for future applications. Available: https://www.i-micronews.com/news/advanced-packaging/7389-stats-chippac-yole.html
[16] P. Starkey. (2016) Facing Incredible Times: Robin Taylor’s Vision of the Future. The PCB Magazine. 34-35.
[17] 張致吉. (2014). 從 IC 載板製程技術的變革看國內樹酯材料產業的機會. Available: https://www.materialsnet.com.tw/DocView.aspx?id=23851
[18] A. K. E.-M. Corporation, "Low temperature curable polyimide for advanced package," in Semicon Taiwan 2015, Taipei, 2015.
[19] Z. Corporation. ZEOCOAT™; Coating Type Insulation Materials for Display. Available: http://www.zeon.co.jp/business_e/enterprise/imagelec/imagelec_index1.html
[20] C. Roberts. (2015) Polyimide and polybenzoxazole technology for wafer-level packaging. Chip Scale Review. 29-30.
[21] D. Chemical. CYCLOTENE* 4000 Series Advanced Electronic Resins (Photo BCB) [Online]. Available: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_096d/0901b8038096dae3.pdf?filepath=cyclotene/pdfs/noreg/618-00285.pdf&fromPage=GetDoc
[22] 楊雲凱. (2015) 物理氣相沉積(PVD)介紹. 奈米通訊. 33-35.
[23] G. O. Mallory and J. B. Hajdu, "Electroless plating," in Electroless Plating: Fundamentals and Applications: William Andrew, 1990, pp. 289-327.
[24] 彭超, "奈米鈀金屬活化液之製備及其在化學鍍銅製程之應用," 碩士 碩士論文, 化學工程學系, 國立清華大學, 新竹市, 2006.
[25] M. Paunovic, "Modern Electroplating," 4th ed. New Jersey: The Electrochemical Society, 2000, p. 645.
[26] B. Faure et al., "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens," Science and technology of advanced materials, vol. 14, no. 2, p. 023001, 2013.
[27] 郭清癸, 黃俊傑, and 牟中原. (2001) 金屬奈米粒子的製造. 物理雙月刊.
[28] J. Cookson, "The preparation of palladium nanoparticles," Platinum Metals Review, vol. 56, no. 2, pp. 83-98, 2012.
[29] Z. Hou, N. Theyssen, A. Brinkmann, and W. Leitner, "Biphasic Aerobic Oxidation of Alcohols Catalyzed by Poly (ethylene glycol)‐Stabilized Palladium Nanoparticles in Supercritical Carbon Dioxide," Angewandte Chemie, vol. 117, no. 9, pp. 1370-1373, 2005.
[30] Y. Li and M. A. El-Sayed, "The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution," The Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8938-8943, 2001.
[31] Y. Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, "Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution," Organic letters, vol. 2, no. 15, pp. 2385-2388, 2000.
[32] R. Narayanan and M. A. El-Sayed, "Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles," Journal of the American Chemical Society, vol. 125, no. 27, pp. 8340-8347, 2003.
[33] M. Pittelkow, K. Moth-Poulsen, U. Boas, and J. B. Christensen, "Poly (amidoamine)-dendrimer-stabilized Pd (0) nanoparticles as a catalyst for the Suzuki reaction," Langmuir, vol. 19, no. 18, pp. 7682-7684, 2003.
[34] T. Teranishi and M. Miyake, "Size control of palladium nanoparticles and their crystal structures," Chemistry of Materials, vol. 10, no. 2, pp. 594-600, 1998.
[35] D. C. Corporation. The Basics of Silane Chemistry [Online]. Available: https://www.xiameter.com/en/ExploreSilicones/Documents/Silane%20Chemistry-1a-95-718-01-F2.pdf
[36] N. Herzer, S. Hoeppener, and U. S. Schubert, "Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates," Chemical Communications, vol. 46, no. 31, pp. 5634-5652, 2010.
[37] B. Arkles, "Tailoring Surfaces with Silanes," 1977.
[38] M. Töpper, T. Fischer, T. Baumgartner, and H. Reichl, "A comparison of thin film polymers for wafer level packaging," in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 769-776: IEEE.
[39] T. Goto et al., "Adhesion Characteristics of Magnetron-Sputter-Deposited Copper on Smooth Cycloolefin for Realizing Wiring with High-Frequency Signal Propagation," Transactions of The Japan Institute of Electronics Packaging, vol. 5, no. 1, pp. 12-19, 2012.
[40] T. Osaka, M. Yoshino, and Y. Shacham-Diamand, "Future Technology Proposal for Damascene Process Using All Wet Electrochemical Technique," ECS Transactions, vol. 19, no. 24, pp. 67-73, 2009.
[41] F. Inoue et al., "Formation of electroless barrier and seed layers in a high aspect ratio through-Si vias using Au nanoparticle catalyst for all-wet Cu filling technology," Electrochimica Acta, vol. 56, no. 17, pp. 6245-6250, 2011.
[42] T.-C. Wei, T.-C. Pan, C.-M. Chen, K.-C. Lai, and C.-H. Wu, "Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer," Electrochemistry Communications, vol. 54, pp. 6-9, 2015.
[43] P. P. Xu, D. Yu, C. Wang, T. T. Wang, and W. Wang, "Preparation and Characterization of Electroless Silver Plating on PAN fiber with chelating agent of APTES/MPTES," in Advanced Materials Research, 2013, vol. 641, pp. 464-468: Trans Tech Publ.
[44] X. Cui, G. Jin, Q. Li, Y. Yang, Y. Li, and F. Wang, "Electroless Ni–P plating with a phytic acid pretreatment on AZ91D magnesium alloy," Materials Chemistry and Physics, vol. 121, no. 1, pp. 308-313, 2010.
[45] J. Xu, R. Fan, J. Wang, M. Jia, X. Xiong, and F. Wang, "Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate," International journal of molecular sciences, vol. 15, no. 4, pp. 6412-6422, 2014.
[46] 林敬二 and 江志強, "紅外線光譜分析," in 材料分析, 汪建民, Ed. 新竹市: 中國材料科學學會, 1998, pp. 501-522.
[47] 高至鈞, "掃描式電子顯微鏡分析," in 中國材料科學學會, 汪建民, Ed., 1998, pp. 121-149.
[48] 潘扶民, "化學分析電子儀分析," in 材料分析, 汪建民, Ed. 新竹市: 中國材料科學學會, 1998, pp. 353-382.
[49] 凌永健 and 王治平, "X光螢光分析," in 材料分析, 汪建民, Ed. 新竹市: 中國材料科學學會, 1998, pp. 471-500.
[50] Standard Test Methods for Rating Adhesion by Tape Test, 2017.
[51] B. Wang, X. Wang, H. Zheng, and Y. C. Lam, "Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation," Nanomaterials, vol. 5, no. 3, pp. 1442-1453, 2015.
[52] S. R. Scheicher, K. Krammer, A. Fian, R. Kargl, V. Ribitsch, and S. Köstler, "Patterned surface activation of cyclo-olefin polymers for biochip applications," Periodica Polytechnica. Chemical Engineering, vol. 58, no. 1, p. 61, 2014.
[53] H. Shinohara, J. Mizuno, and S. Shoji, "Low-temperature Polymer Bonding Using Surface Hydrophilic Treatment for Chemical/bio Microchips," in Solid State Circuits Technologies: InTech, 2010.
[54] R. S. Pawell, D. W. Inglis, T. J. Barber, and R. A. Taylor, "Manufacturing and wetting low-cost microfluidic cell separation devices," Biomicrofluidics, vol. 7, no. 5, p. 056501, 2013.
[55] 材料世界網. (2015). 新開發之耐熱COP等高機能材料. Available: https://www.materialsnet.com.tw/DocView.aspx?id=23825
[56] G. Cardenas and S. P. Miranda, "FTIR and TGA studies of chitosan composite films," Journal of the Chilean Chemical Society, vol. 49, no. 4, pp. 291-295, 2004.
[57] J. Jeffers. IR/Functional Group Laboratory Experiment. Available: http://classes.kvcc.edu/chm220/IR/prelab/introduction.htm
[58] N. A. Nazir et al., "Incorporation of hyperbranched supramolecules into Nafion ionic domains via impregnation and in-situ photopolymerization," Polymers, vol. 3, no. 4, pp. 2018-2038, 2011.
[59] S. Roy, C. Yue, S. Venkatraman, and L. Ma, "Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers," Sensors and Actuators B: Chemical, vol. 178, pp. 86-95, 2013.
[60] Y.-J. Kim, Y. Taniguchi, K. Murase, Y. Taguchi, and H. Sugimura, "Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding," Applied Surface Science, vol. 255, no. 6, pp. 3648-3654, 2009.
[61] I. Tunc, H. H. Susapto, and M. Ö. GÜLER, "Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection," Turkish Journal of Chemistry, vol. 39, no. 4, pp. 697-713, 2015.
[62] J. Böhmler, "Well-controlled and well-described SAMs-based platforms for the study of material-bacteria interactions occuring at the molecular scale," Mulhouse, 2012.
[63] E. Desimoni and B. Brunetti, "X-Ray Photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A Review," Chemosensors, vol. 3, no. 2, pp. 70-117, 2015.
[64] T. Shen, Y. Liu, Y. Zhu, D.-Q. Yang, and E. Sacher, "Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization," Applied Surface Science, vol. 411, pp. 411-418, 2017.
[65] V. Sunkara and Y.-K. Cho, "Aminosilane layers on the plasma activated thermoplastics: Influence of solvent on its structure and morphology," Journal of colloid and interface science, vol. 411, pp. 122-128, 2013.
[66] 葛明德, 林金財, 顏瑞良, 蔡郁德, and 鐘坤儒, "蠟模表面金屬化製程開發研究成果報告(精簡版)," 國防大學2011.
[67] S.-J. Hwang, M.-C. Tseng, J.-R. Shu, and H. H. Yu, "Surface modification of cyclic olefin copolymer substrate by oxygen plasma treatment," Surface and Coatings Technology, vol. 202, no. 15, pp. 3669-3674, 2008.
[68] 許晉偉, "矽晶圓上高附著性無電鍍鎳磷層之研究," 國立清華大學, 新竹市, 碩士論文 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top