參考文獻
[1] 許晉偉, "矽晶圓上高附著性無電鍍鎳磷層之研究," 碩士 碩士論文, 化學工程學系, 國立清華大學, 新竹市, 2016.[2] K. H. Krishnan, S. John, K. Srinivasan, J. Praveen, M. Ganesan, and P. Kavimani, "An overall aspect of electroless Ni-P depositions—a review article," Metallurgical and Materials Transactions A, vol. 37, no. 6, pp. 1917-1926, 2006.
[3] 林士傑, "應用無電解電鍍與電泳技術於玻璃基板沉積研究," 碩士 碩士論文, 機械與機電工程研究所, 國立中山大學, 高雄市, 2006.[4] M. Lu, "Wafer level fan-out and embedded technology for potable/wearable/IoT devices," in Semicon Taiwan 2015, Taipei, 2015, p. 23.
[5] W.-Y. Chen, "The challenges and opportunities of advanced packaging materials," Industrial Technology Research Institute (ITRI) 2014.
[6] 潘扶民. (2001). 為什麼IC產業須要研究低介電材料(low-k). Available: http://web.it.nctu.edu.tw/~FMPANLAB/LowK.htm
[7] 江昇, "超音波照射應用於積體電路銅製程之作用機制探討," 碩士 碩士論文, 化學工程系, 南台科技大學, 台南市, 2004.[8] 李來助. (民 87 年) ULSI 超大型積體電路之銅導線技術. 電子材料. 85-92.
[9] E. Liew et al., "Signal transmission loss due to copper surface roughness in high-frequency region," in IPC APEX EXPO 2014: New Ideas For New Horizons, 2014: IPC-Association Connecting Electronics Industries.
[10] D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, "Low-k dielectric materials," Materials Today, vol. 7, no. 1, pp. 34-39, 2004.
[11] M. Tarr. (2007). High-density interconnect. Available: http://www.mtarr.co.uk/courses/topics/0262_hdi/index.html
[12] K. J. Puttlitz and P. A. Totta, "Laminate/HDI Dei Carrier," in Area array interconnection handbook: Springer Science & Business Media, 2001, pp. 285-288.
[13] J. H. Lau and S. W. R. Lee, "Microvias by photoimaging," in Microvias: For Low Cost, High Density InterconnectsNew York, NY: McGraw-Hill, 2001, pp. 163-165.
[14] M. Kurosawa. (2012). Laser drilling high-density printed circuit boards. Available: http://www.industrial-lasers.com/articles/print/volume-27/issue-05/features/laser-drilling-high-density-printed-circuit-boards.html
[15] S. Sikorski and B. Petrov. (2016). STATS ChipPAC reaping the FO WLP seeds, ready with SiP portfolio for future applications. Available: https://www.i-micronews.com/news/advanced-packaging/7389-stats-chippac-yole.html
[16] P. Starkey. (2016) Facing Incredible Times: Robin Taylor’s Vision of the Future. The PCB Magazine. 34-35.
[17] 張致吉. (2014). 從 IC 載板製程技術的變革看國內樹酯材料產業的機會. Available: https://www.materialsnet.com.tw/DocView.aspx?id=23851
[18] A. K. E.-M. Corporation, "Low temperature curable polyimide for advanced package," in Semicon Taiwan 2015, Taipei, 2015.
[19] Z. Corporation. ZEOCOAT™; Coating Type Insulation Materials for Display. Available: http://www.zeon.co.jp/business_e/enterprise/imagelec/imagelec_index1.html
[20] C. Roberts. (2015) Polyimide and polybenzoxazole technology for wafer-level packaging. Chip Scale Review. 29-30.
[21] D. Chemical. CYCLOTENE* 4000 Series Advanced Electronic Resins (Photo BCB) [Online]. Available: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_096d/0901b8038096dae3.pdf?filepath=cyclotene/pdfs/noreg/618-00285.pdf&fromPage=GetDoc
[22] 楊雲凱. (2015) 物理氣相沉積(PVD)介紹. 奈米通訊. 33-35.
[23] G. O. Mallory and J. B. Hajdu, "Electroless plating," in Electroless Plating: Fundamentals and Applications: William Andrew, 1990, pp. 289-327.
[24] 彭超, "奈米鈀金屬活化液之製備及其在化學鍍銅製程之應用," 碩士 碩士論文, 化學工程學系, 國立清華大學, 新竹市, 2006.[25] M. Paunovic, "Modern Electroplating," 4th ed. New Jersey: The Electrochemical Society, 2000, p. 645.
[26] B. Faure et al., "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens," Science and technology of advanced materials, vol. 14, no. 2, p. 023001, 2013.
[27] 郭清癸, 黃俊傑, and 牟中原. (2001) 金屬奈米粒子的製造. 物理雙月刊.[28] J. Cookson, "The preparation of palladium nanoparticles," Platinum Metals Review, vol. 56, no. 2, pp. 83-98, 2012.
[29] Z. Hou, N. Theyssen, A. Brinkmann, and W. Leitner, "Biphasic Aerobic Oxidation of Alcohols Catalyzed by Poly (ethylene glycol)‐Stabilized Palladium Nanoparticles in Supercritical Carbon Dioxide," Angewandte Chemie, vol. 117, no. 9, pp. 1370-1373, 2005.
[30] Y. Li and M. A. El-Sayed, "The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution," The Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8938-8943, 2001.
[31] Y. Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, "Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution," Organic letters, vol. 2, no. 15, pp. 2385-2388, 2000.
[32] R. Narayanan and M. A. El-Sayed, "Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles," Journal of the American Chemical Society, vol. 125, no. 27, pp. 8340-8347, 2003.
[33] M. Pittelkow, K. Moth-Poulsen, U. Boas, and J. B. Christensen, "Poly (amidoamine)-dendrimer-stabilized Pd (0) nanoparticles as a catalyst for the Suzuki reaction," Langmuir, vol. 19, no. 18, pp. 7682-7684, 2003.
[34] T. Teranishi and M. Miyake, "Size control of palladium nanoparticles and their crystal structures," Chemistry of Materials, vol. 10, no. 2, pp. 594-600, 1998.
[35] D. C. Corporation. The Basics of Silane Chemistry [Online]. Available: https://www.xiameter.com/en/ExploreSilicones/Documents/Silane%20Chemistry-1a-95-718-01-F2.pdf
[36] N. Herzer, S. Hoeppener, and U. S. Schubert, "Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates," Chemical Communications, vol. 46, no. 31, pp. 5634-5652, 2010.
[37] B. Arkles, "Tailoring Surfaces with Silanes," 1977.
[38] M. Töpper, T. Fischer, T. Baumgartner, and H. Reichl, "A comparison of thin film polymers for wafer level packaging," in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 769-776: IEEE.
[39] T. Goto et al., "Adhesion Characteristics of Magnetron-Sputter-Deposited Copper on Smooth Cycloolefin for Realizing Wiring with High-Frequency Signal Propagation," Transactions of The Japan Institute of Electronics Packaging, vol. 5, no. 1, pp. 12-19, 2012.
[40] T. Osaka, M. Yoshino, and Y. Shacham-Diamand, "Future Technology Proposal for Damascene Process Using All Wet Electrochemical Technique," ECS Transactions, vol. 19, no. 24, pp. 67-73, 2009.
[41] F. Inoue et al., "Formation of electroless barrier and seed layers in a high aspect ratio through-Si vias using Au nanoparticle catalyst for all-wet Cu filling technology," Electrochimica Acta, vol. 56, no. 17, pp. 6245-6250, 2011.
[42] T.-C. Wei, T.-C. Pan, C.-M. Chen, K.-C. Lai, and C.-H. Wu, "Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer," Electrochemistry Communications, vol. 54, pp. 6-9, 2015.
[43] P. P. Xu, D. Yu, C. Wang, T. T. Wang, and W. Wang, "Preparation and Characterization of Electroless Silver Plating on PAN fiber with chelating agent of APTES/MPTES," in Advanced Materials Research, 2013, vol. 641, pp. 464-468: Trans Tech Publ.
[44] X. Cui, G. Jin, Q. Li, Y. Yang, Y. Li, and F. Wang, "Electroless Ni–P plating with a phytic acid pretreatment on AZ91D magnesium alloy," Materials Chemistry and Physics, vol. 121, no. 1, pp. 308-313, 2010.
[45] J. Xu, R. Fan, J. Wang, M. Jia, X. Xiong, and F. Wang, "Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate," International journal of molecular sciences, vol. 15, no. 4, pp. 6412-6422, 2014.
[46] 林敬二 and 江志強, "紅外線光譜分析," in 材料分析, 汪建民, Ed. 新竹市: 中國材料科學學會, 1998, pp. 501-522.
[47] 高至鈞, "掃描式電子顯微鏡分析," in 中國材料科學學會, 汪建民, Ed., 1998, pp. 121-149.
[48] 潘扶民, "化學分析電子儀分析," in 材料分析, 汪建民, Ed. 新竹市: 中國材料科學學會, 1998, pp. 353-382.
[49] 凌永健 and 王治平, "X光螢光分析," in 材料分析, 汪建民, Ed. 新竹市: 中國材料科學學會, 1998, pp. 471-500.
[50] Standard Test Methods for Rating Adhesion by Tape Test, 2017.
[51] B. Wang, X. Wang, H. Zheng, and Y. C. Lam, "Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation," Nanomaterials, vol. 5, no. 3, pp. 1442-1453, 2015.
[52] S. R. Scheicher, K. Krammer, A. Fian, R. Kargl, V. Ribitsch, and S. Köstler, "Patterned surface activation of cyclo-olefin polymers for biochip applications," Periodica Polytechnica. Chemical Engineering, vol. 58, no. 1, p. 61, 2014.
[53] H. Shinohara, J. Mizuno, and S. Shoji, "Low-temperature Polymer Bonding Using Surface Hydrophilic Treatment for Chemical/bio Microchips," in Solid State Circuits Technologies: InTech, 2010.
[54] R. S. Pawell, D. W. Inglis, T. J. Barber, and R. A. Taylor, "Manufacturing and wetting low-cost microfluidic cell separation devices," Biomicrofluidics, vol. 7, no. 5, p. 056501, 2013.
[55] 材料世界網. (2015). 新開發之耐熱COP等高機能材料. Available: https://www.materialsnet.com.tw/DocView.aspx?id=23825
[56] G. Cardenas and S. P. Miranda, "FTIR and TGA studies of chitosan composite films," Journal of the Chilean Chemical Society, vol. 49, no. 4, pp. 291-295, 2004.
[57] J. Jeffers. IR/Functional Group Laboratory Experiment. Available: http://classes.kvcc.edu/chm220/IR/prelab/introduction.htm
[58] N. A. Nazir et al., "Incorporation of hyperbranched supramolecules into Nafion ionic domains via impregnation and in-situ photopolymerization," Polymers, vol. 3, no. 4, pp. 2018-2038, 2011.
[59] S. Roy, C. Yue, S. Venkatraman, and L. Ma, "Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers," Sensors and Actuators B: Chemical, vol. 178, pp. 86-95, 2013.
[60] Y.-J. Kim, Y. Taniguchi, K. Murase, Y. Taguchi, and H. Sugimura, "Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding," Applied Surface Science, vol. 255, no. 6, pp. 3648-3654, 2009.
[61] I. Tunc, H. H. Susapto, and M. Ö. GÜLER, "Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection," Turkish Journal of Chemistry, vol. 39, no. 4, pp. 697-713, 2015.
[62] J. Böhmler, "Well-controlled and well-described SAMs-based platforms for the study of material-bacteria interactions occuring at the molecular scale," Mulhouse, 2012.
[63] E. Desimoni and B. Brunetti, "X-Ray Photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A Review," Chemosensors, vol. 3, no. 2, pp. 70-117, 2015.
[64] T. Shen, Y. Liu, Y. Zhu, D.-Q. Yang, and E. Sacher, "Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization," Applied Surface Science, vol. 411, pp. 411-418, 2017.
[65] V. Sunkara and Y.-K. Cho, "Aminosilane layers on the plasma activated thermoplastics: Influence of solvent on its structure and morphology," Journal of colloid and interface science, vol. 411, pp. 122-128, 2013.
[66] 葛明德, 林金財, 顏瑞良, 蔡郁德, and 鐘坤儒, "蠟模表面金屬化製程開發研究成果報告(精簡版)," 國防大學2011.
[67] S.-J. Hwang, M.-C. Tseng, J.-R. Shu, and H. H. Yu, "Surface modification of cyclic olefin copolymer substrate by oxygen plasma treatment," Surface and Coatings Technology, vol. 202, no. 15, pp. 3669-3674, 2008.
[68] 許晉偉, "矽晶圓上高附著性無電鍍鎳磷層之研究," 國立清華大學, 新竹市, 碩士論文 2016.