跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃心怡
研究生(外文):Sin-Yi Huang
論文名稱:銅鐵異種金屬直流電阻點銲之參數最佳化探討
論文名稱(外文):Optimization study on Cu-Fe dissimilar metals in DC Resistance Spot Welding
指導教授:吳國棟
口試委員:余豐榮田方治王明展
口試日期:2010-06-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:電阻點銲直流電田口方法倒傳遞神經網路
外文關鍵詞:Resistance Spot Welding (RSW)Direct Current (DC)Taguchi MethodsBack-Propagation Network (BPN)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於找出銅鐵異種金屬進行電阻點銲銲接之最佳製程參數。故本研究將100×25㎜×1t之鐵材(JIS-G3141 SPCE)和銅材(JIS-C1100)進行電阻點銲之製程,使用直流電之電源供應器來進行電阻點銲實驗,電極材質分別為鉬及鉻銅之平面電極,並探討三種影響之控制因子:銲接電流(Welding Current)、銲接時間(Welding Time)及電極加壓力(Electrode Force)之銲接結果,最後進行拉伸實驗(Tensile-shear test),對銲塊(nugget)之抗拉強度(Tensile-shear strength)的差異做評估。
本研係透過田口方法(Taguchi Methods)的L8直交表規劃實驗,利用田口方法的因子效應分析及變異數分析(ANOVA)找出最佳製程參數組合,並用倒傳遞神經網路(BPN)協助找出最佳製程參數組合與預測最佳參數組合結果。最後透過確認實驗與計算信賴區間驗證實驗結果。
研究結果顯示使用田口方法、變異數分析及倒傳遞神經網路分析出之最佳參數組合皆為:A2B2C1,即銲接電流12(kA)、銲接時間6(cycles)以及電極加壓力240(kg)。經確認實驗也可以知道此最佳參數組合具再現性(Reproducibility),可知此參數組合為加工條件範圍內之最佳參數組合。

This research is about the optimization study on Cu-Fe dissimilar metals in DC Resistance Spot Welding. In this study, 100 mm × 25 mm × 1t mm material of iron (JIS-G3141 SPCE) and copper (JIS-C1100) for resistance spot welding processes, use DC power supplies for resistance spot welding. Electrode materials were for the molybdenum and chromium copper alloy plane electrode. Study of three influencing control factors: welding current, welding time and the electrode force of the welding results. Finally, Used Tensile-shear test to assessed differences of Tensile-shear strength and nugget.
This study had used Taguchi method of the L8 orthogonal array to plan the experiment, the Taguchi method of factor analysis and ANOVA to identify the optimum process parameters, and use back-propagation network (BPN) to assist in identifying optimum process parameters and predict the optimum process parameters results. Eventually, by the confirmation test and verify the results calculated confidence interval.
The results show that using the Taguchi method, ANOVA, and the back-
propagation network of the optimum process parameters are: the welding current 12 (kA), welding time 6 (cycles) and the electrode force 240 (kg). The experiment also confirmed that the optimal combination of parameters with a reproducibility.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究限制 3
1.4 研究步驟與流程 4
第二章 文獻探討 6
2.1電阻點銲 6
2.1.1電阻點銲之基本原理 7
2.1.2銲接機器設備 9
2.1.3電極材料 11
2.1.4影響電阻點銲之因素 12
2.1.5銲接品質之檢驗方法 15
2.2田口方法 16
2.3類神經網路 17
第三章 研究方法 20
3.1實驗材料 20
3.1.1銅 20
3.1.2鐵 21
3.2實驗試片 21
3.3實驗設備及儀器 22
3.4實驗流程 26
3.4.1電阻點銲之實驗 26
3.4.2拉伸試驗 28
3.5實驗數據解析方法 28
3.5.1田口方法 29
3.5.2變異數分析 29
3.5.3倒傳遞網路 32
第四章 實驗分析 33
4.1實驗數據解析 33
4.1.1田口方法 33
4.1.2倒傳遞網路 46
4.1.3實驗推定與評估 58
4.1.4確認實驗 59
4.2實驗結果分析 60
第五章 結論與建議 64
5.1 結論 64
5.2 建議 65
參考文獻 66
附錄A 電阻點銲銲接結果 70
附錄B 拉伸試驗結果 73
附錄C 拉伸試驗數據 76

[1]王振欽,銲接學,登文書局,1985。
[2]龔伯康,現代銲接學-下冊,台北市 ,徐氏基金會,1984。
[3]蘇文欽,車身修理的不同鋼板電阻點銲最佳條件之研究,碩士論文,逢甲大學工業工程學系研究所,2001。
[4]李輝煌,田口方法-品質設計的原理與實務,高立出版集團,2009。
[5]葉怡成,應用類神經網路模式,儒林圖書有限公司,1997。
[6]焦李成,神經網路系統理論,儒林圖書有限公司,1991。
[7]鄭守益,以類神經網路鑑別點銲品質之研究,碩士論文,國立雲林科技大學機械工程系碩士班,2003。
[8]邱永德,多重品質特性實驗設計模式之建立,碩士論文,華梵大學工業管理學系碩士班,2003。
[9]陳信憲,結合6σ手法與田口實驗設計對改善製程能力之研究,碩士論文,國防管理學院資源管理研究所,2002。
[10]周湘蘭,類神經網路在多重產品需求預測上之應用,碩士論文,元智大學工業工程與管理學系,2002。
[11]涂育瑋,應用類神經網路模式與基因演算法則於品質設計之研究,碩士論文,國立成功大學工業設計學系碩博士班,2003。
[12]葉怡成、吳沛儒,「基於類神經網路與交叉驗證法之田口方法」,品質學報,第十六卷,第四期,2009,第261-279頁。
[13]中國機械工程學會銲接學會,銲接手冊,北京,機械工業,2008。
[14]田口玄一,譯蘇學恭,品質工程-品質從產品與製程的設計開始,中國生產力中心,1991。
[15]S. M. Darwish, “Analysis of weld-bonded dissimilar materials,” International Journal of Adhesion & Adhesives, vol.24, 2004, pp.347-354.
[16]S. M. Darwish, “Weldbonding strengthens and balances the stresses in spot-welded dissimilar thickness joints,” Journal of Materials Processing Technology, vol.134, 2003, pp.352-362.
[17]P. Gandham , M. Sambandam , D. Pradip , M. Jyotirmoy and C. Kamanio, “Characterization of a continuous CO2 laser-welded Fe-Cu dissimilar couple,” Metallurgical and materials transactions A, vol. 36, no. 8, pp. 2137-2147.
[18]S. Aslanlar , A. Ogur , U. Ozsarac and E. Ilhan, “Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding,” Materials and Design, vol. 29, 2008, pp. 1427-1431.
[19]H. Ahmet and k. Ramazan, “Resistance spot weldability of dissimilar materials (AISI 316L–DIN EN 10130-99 steels),” Materials and Design, vol. 28, 2007, pp. 1794-1800.
[20]P. Marashi , M. Pouranvari , S. Amirabdollahian , A. Abedi and M. Goodarzi, “Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels,” Materials Science and Engineering A, Vol. 480, Issues 1-2, 2008, pp. 175-180.
[21]M.J. Karagoulis, “A Nuto and Bolts Approach to the Control of Resistance Spot Welding,” Welding Journal, vol.73, no. 6, 1994, pp.27-31.
[22]Y. Zhou , S. J. Dong and K. J. Ely, “Weldability of thin sheet metals by small-scale resistance spot welding using high-frequency inverter and capacitor-discharge power supplies,” Journal of Electronic Materials, vol. 30, no. 8, 2001, pp. 1012-1020.

[23]K. Hofman, M. Sote, C. Orsette, S. Villaire and M. Prokator, “AC or DC for resistance welding dual-phase 600,” Welding Journal, vol. 84, 2005, pp. 46-49.
[24]W. Li, C. Daniel and A. G. Gerald,, “A Comparative Study of Single-Phase AC and Multiphase DC Resistance Spot Welding,” Journal of Manufacturing Science and Engineering, Vol. 127, 2005, pp. 583-589
[25]D. Özyürek, “An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel,” Materials & Design, vol.29 , Issue 3, 2008, pp. 597-603.
[26]X. Zhang, G. Chen, Y. Zhang and X. Lai, “Improvement of resistance spot weldability for dual-phase (DP600) steels using servo gun,” Journal of Materials Processing Technology, vol. 209, Issue 5, 2009, pp. 2671-2675.
[27]H.K. Yoon, B.H. Min, C.S. LEE, D.H. Kim, Y.K. Kim and W.J. PARK, “Strength characteristics on resistance spot welding of Al alloy sheets by Taguchi method,” International Journal of Modern Physics B, Vol. 20, Issue 25-27 ,2006, pp. 4297-4302.
[28]H.L. Lin, T. Chou, and C.P. Chou, “Optimization of Resistance Spot Welding process using Taguchi method and A Neural Network,” Experimental Techniques, vol. 31, no. 5 , 2007, pp. 30-36.
[29]H.L. Lin, T. Chou, and C.P. Chou, “Modelling and optimization of the resistance spot welding process via a Taguchi–neural approach in the automobile industry,” Automobile Engineering , vol.222, 2008, pp. 1385-1393.
[30]K.Y. Benyounis and A.G. Olabi, “Optimization of different welding processes using statistical and numerical approaches - A reference guide,” Advances in Engineering Software, vol. 39, 2008, pp. 483-496.
[31]H.T. Sun, X.M. Lai, Y.S. Zhang and J. Shen, “Effect of variable electrode force on weld quality in resistance spot welding,” Science and Technology Welding and Joining, vol. 12, no. 8, 2007, pp. 688-694.
[32]W. H Kearns, Welding handbook, American Welding Society, 1976.
[33]I.A. Basheer and M. Hajmeer, “Articial neural networks: fundamentals, computing, design, and application,” Journal of Microbiological Methods, vol. 43, 2000, pp. 3-31.
[34]S.C. Juang, Y.S. Tarng and H.R. Lii, “A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process,” Journal of Materials Processing Technology, vol.75, no.1-3, 1998, pp. 54-62.
[35]A.G. Olabi, G. Casalino, K.Y. Benyounis and M.S.J. Hashmi, An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding, Advances in Engineering Software, vol. 37, Issue 10, 2006, pp. 643-648.
[36]O. Martín, M. López and F. Martín, “Artificial neural networks for quality control by ultrasonic testing in resistance spot welding,” Journal of Materials Processing Technology , vol. 183, 2007, pp. 226-233.
[37]B.M. Brown, “A comparison of AC and DC resistance welding of automotive steels,” Welding Journal, vol. 66, no. 1, 1987, pp. 18-23.
[38]Xin Sun, Moha㎜ad A. Khaleel, “Dynamic strength evaluations for self-piercing rivets and resistance spot welds joining similar and dissimilar metals,” International Journal of Impact Engineering, vol. 34, 2007, pp. 1668-1682.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top