跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林芮年
研究生(外文):Lin, Jui-Nien
論文名稱:仿生性釕氫團簇催化劑於醇類光催化產氫之研究
論文名稱(外文):Photocatalytic Hydrogen Generation from Alcohols by Ruthenium-Based Biomimetic H-Cluster Catalyst
指導教授:吳東昆
指導教授(外文):Wu, Tung-Kung
口試委員:徐秀福鄭建中
口試委員(外文):Hsu, Hsiu-FuCheng, Chien-Chung
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:126
中文關鍵詞:產氫光催化釕基氫簇團
外文關鍵詞:Hydrogen GenerationPhotocatalyticRuthenium H-cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球能源消耗增加,主要為依賴於非再生能源,例如:石油、媒和天然氣等等,因此發展再生能源的意識漸漸上升,然而在眾多的能源中,以氫能源的發展最吸引人關注,在自然界中,氫氣可藉由產氫酶所產生,產氫酶為一種可以可逆催化氫氣氧化還原的酶。近年來,努力朝向利用醇類發展產氫系統,因為醇類是相對於較容易被處理、儲存及可以從生物原料中生產。
在此研究中,我們將模仿雙硫鐵產氫酶的架構,並且將鐵金屬置換成釕金屬做為活性中心金屬。首先我們將使用Ru3S2Boc於不同小分子的醇類中(例如: 甲醇、乙醇、正丙醇、異丙醇、正丁醇和異丁醇等)去進行於Xe-光源下進行光催化產氫,並且尋找最佳產氫效率的條件(例如:測試不同溫度、濃度、機磷配位基、不同比例的催化劑與有機磷配位基以及催化劑、有機磷配位基、鹼對效率上的影響),最後將利用紅外光光譜儀與1H & 13C NMR對此系統除了氫氣以外的產物去進行分析。
接下來,合成一系列的Ru3-MBD與Ru3-MBT衍生物([Ru3-MBD]、[Ru3-MBT]、[Ru3-5-CH3-MBT]、[Ru3-6-CH3-MBT] 和 [Ru3-7-CH3-MBT]) ,並且利用紫外光-可見光光譜儀、紅外光光譜儀對此系列的化合物做結構上的特性分析。最後,經由X-光單晶繞射儀進行結構鑑定。接著,參考於Ru3S2Boc所找到的最佳醇類產氫條件系統中,再利用Ru3-MBD去尋找此系列化合物在小分子醇類中的最佳產氫條件,最後將Ru3-MBD與Ru3-MBT衍生物應用至Ru3-MBD所優化後的最佳產氫條件,去研究結構上的不同對於產氫效率上的影響。
最後,也將進一步使用Ru3S2Boc於較大分子的醇類中去進行產氫,在此的條件為先前在小分子醇類中所優化後的條件應用於此,但由於較大分子的醇類其沸點較高,故在此部分將溫度由95 ℃提高至125 ℃去進行光催化產氫反應。期望此研究在未來能應用至綠能產業的發展上。
With the increasing global energy consumption, which is mostly based on non-renewable energy sources such as oil, coal, and natural gas, the need for new renewable energy resources is growing. Among the numerous potential scenarios, hydrogen energy is considered to be one of the most attractive. In nature, hydrogen can be produced by hydrogenase enzymes, which can catalyze a reversible reduction of protons to yield molecular hydrogen. In recent years, significant efforts have been directed toward the use of alcohols for hydrogen generation, which are relatively easy to handle and store and can be produced from biological feedstock.
In this study, we mimic the structure of [Fe-Fe]-hydrogenases and replace iron with ruthenium as the active center metal. First, we use Ru3S2Boc to generate photocatalytic hydrogen from aqueous solutions of various small alcohol molecules (e.g., methanol, ethanol, n-propanol, isopropanol, 1-butanol, 2-butanol) and we determine the best conditions for achieving hydrogen generation efficiency (i.e., with respect to temperature, concentration, ligand, ratio of catalyst/ligand, and effects of the catalyst, base, and ligand) and perform a product analysis using Fourier transform–infrared (FT-IR) and 1H & 13C nuclear magnetic resonance (NMR) spectrosopies.

Next, we synthesize a series of Ru3-MBD and Ru3-MBT derivatives ([Ru3-MBD], [Ru3-MBT], [Ru3-5-CH3-MBT], [Ru3-6-CH3-MBT] and [Ru3-7-CH3-MBT]) and characterize them using UV-Vis, FT-IR, and X-ray diffraction (XRD) spectroscopies. Then, with reference to the optimum small-molecule alcohol-based hydrogen generation system identified in Ru3S2Boc, we use Ru3-MBD to identify the optimal conditions for hydrogen generation with this series of compounds in small-molecule alcohols. Lastly, we use Ru3-MBD and Ru3-MBT derivatives to optimize the hydrogen production conditions for Ru3-MBD and study the effects of structural differences on hydrogen production efficiency.
Finally, we employ Ru3S2Boc to produce hydrogen from larger molecule alcohols and apply the same conditions identified as optimal for the small-molecule alcohols. However, since the boiling point of larger molecule alcohols is higher, we use temperatures from 95 °C to 125 °C to generate the photocatalytic hydrogen. We expect the results of this study to facilitate the development of the green energy industry.
摘要---i
Abstract---iii
謝誌 (Acknowledgment)---v
Table of Contents---vii
Table of Figures---x
Table of Tables---xv
Table of Schemes---xvii
1. Introduction---1
1.1 Global Energy Consumption and the Energy Crisis---1
1.2 Solar Energy---2
1.3 Hydrogen: Fuel of the Future---4
1.4 Hydrogenases---6
1.4.1 [Ni-Fe] Hydrogenase---7
1.4.2 [Fe-Fe] Hydrogenase---8
1.4.3 [Fe] Hydrogenase---8
1.5 Photocatalytic System---9
1.5.1 Aqueous Phase---9
1.5.2 Organic Phase---10
1.6 Photocatalytic Hydrogen Generation from Alcohols---10
1.7 Pioneering Contributions—Hydrogen Generation from Alcohols[12]---11
1.8 Current Development of Hydrogen Generation from Alcohols---12
1.8.1 Hydrogen Generation from Methanol---12
1.8.2 Hydrogen Generation from Ethanol---17
1.8.3 Hydrogen Generation from Isopropyl Alcohol---18
1.9 General Finishing of Hydrogen Generation for Alcohols---20
1.10 Specific Aims---22
2. Experimental Materials and Procedures---24
2.1 Experimental Materials---24
2.2 Experimental Apparatus---25
2.3 Synthetic Section---26
2.3.1 Synthesis of Ru3-MBD---26
2.3.2 Synthesis of Ru3-MBT and its derivatives---27
2.3.2.1 Synthesis of Ru3-MBT---27
2.3.2.2 Synthesis of Ru3-5-CH3-MBT---28
2.3.2.3 Synthesis of Ru3-6-CH3-MBT---29
2.3.2.4 Synthesis of Ru3-7-CH3-MBT---30
2.4 Crystallograhpy---31
2.5 Physical Studies---31
2.6 Electrochemistry---31
2.7 Photocatalytic Hydrogen Generation---32
2.7.1 Hydrogen Generation from Formic acid---33
2.7.2 Hydrogen Generation from Alcohols---33
3. Results and Discussion---34
3.1 Characterization of the Ruthenium Catalysts---34
3.1.1 Structure Characterization of Ru3-MBD---34
3.1.2 Structure Characterization of Ru3-MBT---35
3.1.3 Structure Characterization of Ru3-5-CH3-MBT---37
3.1.4 Structure Characterization of Ru3-6-CH3-MBT---39
3.1.5 Structure Characterization of Ru3-7-CH3-MBT---41
3.2 UV-Visble Absorption Spectrum Analysis of Substrates and Ruthenium Catalysts---42
3.3 FT-IR Spectrum Analysis of the Ruthenium Catalysts---46
3.4 Electrochemical Properties of Ruthenium Catalysts---53
3.5 Photocatalytic Hydrogen Generation from Alcohols---60
3.5.1 Influence of Different Alcohols on Photocatalytic Hydrogen Generation---61
3.5.2 Influence of Different Bases on Photocatalytic Hydrogen Generation---64
3.5.3 Influence of Different Amounts of Base on Photocatalytic Hydrogen Generation---66
3.5.4 Influence of Hexadecane on Photocatalytic Hydrogen Generation---68
3.5.5 Proving that Hydrogen Generation from Isopropanol does not Generate Carbon Dioxide in this System---70
3.5.6 Determination of Light or Thermal Energy for Triggering the Photocatalytic Hydrogen Generation---71
3.5.7 Influence of P-ligands on Photocatalytic Hydrogen Generation---73
3.5.8 Optimization of P-ligand Ratio on Photocatalytic Hydrogen Generation---75
3.5.9 Influence of Different Alcohols on Photocatalytic Hydrogen Generation---77
3.5.10 Influence of Catalyst, Base, Ligand Combinations on Photocatalytic Hydrogen Generation---79
3.5.11 Influence of Temperature on Photocatalytic Hydrogen Generation---81

3.5.12 Influence of Different Ratios of Isopropanol/Water on Photocatalytic Hydrogen Generation---83
3.6 Products Analysis for Hydrogen Generation From Isopropanol---85
3.7 Development of a Series of Ru3-MBD and Ru3-MBT Derivatives from Hydrogen Generation System from Alcohols---92
3.7.1 Influence of Different Alcohols on Photocatalytic Hydrogen Generation---94
3.7.2 Influence of P-ligands on Photocatalytic Hydrogen Generation---96
3.7.3 Influence of Different Bases on Photocatalytic Hydrogen Generation---98
3.7.4 Influence of Different Amounts of Base on Photocatalytic Hydrogen Generation---100
3.7.5 Influence of Catalyst and Base on Photocatalytic Hydrogen Generation---102
3.7.6 Influence of Different Ratios of Isopropanol/Water on Photocatalytic Hydrogen Generation---104
3.7.7 Application of a Series of Ru3-MBD and Ru3-MBT Derivatives in Optimized Conditions in Hydrogen Generation Experiments---106
3.8 Use of Ru3S2Boc Previously Found Best Conditions for the Larger Molecule Alcohols for Hydrogen Generation 108
3.8.1 To Solve the Problem of Stopping the Reaction: Adding Different Amounts of Base---110
4. Conclusion---112
4.1 Conclusion---112
4.2 Future Perspective---113
References---115
Appendix---117
1.Dunn, S. Int. J. Hydrogen Energy 2002, 27, 235.
2.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
3.Luther, W., Aktionslinie Hessen-Nanotech 2008, 9, 17.
4.Solar Energy Perspectives: Executive Summary. International Energy Agency. 2011.
5.Bockris, J. O. M. Science 1972, 176, 1323.
6.DOE, Stanford University, College of the Desert, & Green Econometrics research.
7.Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368, 3329.
8.Kawasaki Heavy Industries; editorial revisions by Nippon.com.
9.Jugder, B.-E.; Welch, J.; Aguey-Zinsou, K.-F.; Marquis, C. P. RSC Advances 2013, 3, 8142.
10.DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song, China Biotechnology, 2015, 35(5), 109.
11.Barton, B. E.; Olsen, M. T.; Rauchfuss, T. B. Curr. Opin. Biotechnol. 2010, 21, 292.
12.McConnell, I.; Li, G.; Brudvig, G. W. Chemistry & Biology 2010, 17, 434.
13.Pierre H. Dixneuf, Christian Bruneau, Topics in Organometallic Chemistry, 2014, 48.
14.Dobson, A.; Robinson, S. D. Inorg. Chem. 1977, 16, 137.
15.Dobscn, A.; Robinson, S. D. J. Organomet. Chem. 1975, 87, C52.
16.Jung, C. W.; Garrou, P. E. Organometallics 1982, 1, 658.
17.Shinoda, S.; Itagaki, H.; Saito, Y. J. Chem. Soc., Chem. Commun. 1985, 860.
18.Fujii, T.; Saito, Y. J. Mol. Catal. 1991, 67, 185.
19.Yang, L.-C.; Ishida, T.; Yamakawa, T.; Shinoda, S. J. Mol. Catal. A: Chem. 1996, 108, 87.
20.Morton, D.; Cole-Hamilton, D. J.; Utuk, I. D.; Paneque-Sosa, M.; Lopez-Poveda, M. J. Chem. Soc., Dalton Trans. 1989, 489.
21.Morton, D.; Cole-Hamilton, D. J. J. Chem. Soc., Chem. Commun. 1988, 1154.
22.Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85.
23.Monney, A.; Barsch, E.; Sponholz, P.; Junge, H.; Ludwig, R.; Beller, M. Chem. Commun. 2014, 50, 707.
24.Hu, P.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catalysis 2014, 4, 2649.
25.Fujita, K.-i.; Kawahara, R.; Aikawa, T.; Yamaguchi, R. Angew. Chem. Int. Ed. 2015, 54, 9057.
26.Andérez-Fernández, M.; Vogt, L. K.; Fischer, S.; Zhou, W.; Jiao, H.; Garbe, M.; Elangovan, S.; Junge, K.; Junge, H.; Ludwig, R.; Beller, M. Angew. Chem. Int. Ed. 2017, 56, 559.
27.Nielsen, M.; Junge, H.; Kammer, A.; Beller, M. Angew. Chem. Int. Ed. 2012, 51, 5711.
28.Sponholz, P.; Mellmann, D.; Cordes, C.; Alsabeh, P. G.; Li, B.; Li, Y.; Nielsen, M.; Junge, H.; Dixneuf, P.; Beller, M. ChemSusChem 2014, 7, 2419.
29.Junge, H.; Loges, B.; Beller, M. Chem. Commun. 2007, 522.
30.Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 9593.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊