跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳義城
研究生(外文):Yi-Cheng Chen
論文名稱:雙相式平行渦輪解碼器之晶片設計
論文名稱(外文):Chip Design of Dual Phase Parallel Turbo Decoder
指導教授:李文達李文達引用關係
指導教授(外文):Wen-Ta Lee
口試委員:黃育賢劉遠楨
口試委員(外文):Yuh-Shyan HwangYuan-Chen Liu
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:55
中文關鍵詞:渦輪碼交錯器軟資訊解碼器解碼效能
外文關鍵詞:Turbo codesparallel architectureBER performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線通訊領域研究與發展上,渦輪碼一直佔有重要的地位,因其使用一疊代解碼演算法使得它的解碼能力趨近於仙農極限。現代無線通訊協定上,資料產出量是其中一個嚴苛的要求,研究者於是發展出平行解碼及高基數架構來滿足此要求,然而兩者皆會縮短交錯器可交錯之距離進而影響到解碼能力。因此本論文提出一個新型雙相式解碼架構應用於兩顆軟資訊解碼器上,能在解碼能力與資料產出量中間取得一平衡,並且透過改善交錯器硬體架構和操作兩顆軟資訊解碼器使用量來分別減少17%晶片面積及有效地降低功率消耗。
我們根據不同解碼時相時間來決定軟資訊解碼器的使用量,在循序解碼時相使用兩顆軟資訊解碼器來做平行解碼,但是在交錯時相只用一顆軟資訊解碼器來解碼以避免解碼效能的降低,實驗結果顯示解碼效能與平行解碼相比能提升0.2dB。我們將所提出的雙相式平行渦輪解碼器驗證在Xilinx Virtex-5 FPGA上,仿真結果顯示具有解碼能力且當工作頻率為100 MHz及消耗功率在255 mW 的時候能提供7.5Mb/s資料產出量。另外我們也採用TSMC 0.18 μm 1P6M CMOS製程來完成晶片合成與佈局,量測的晶片大小為3.03mm2 含有130285邏輯閘數量。


Turbo codes use an iterative algorithm that allows the BER performance to achieve the Shannon limit to carry out decoding. Relative literatures and developments have been researched over decades. One of the requirements of communication standard is throughput which can be satisfied by using parallel or high radix architecture. However, both methods would cause the degradation of the BER performance because they shorten the interleaver length. Hence, we propose a dual phase decoding architecture for two SISO decoders based on different decoding phase. Compared with traditional parallel turbo decoder, the BER performance can improve about 0.2 dB. Experimental results show that our chip can decrease 17% chip area and can reduce power consumption effectively. Also emulation of the Xilinx Virtex-5 FPGA board shows that our turbo decoder can achieve 7.5 Mb/s throughput while operating at 100 MHz, and only consumes 255 mW. We also use TSMC 0.18 μm 1P6M CMOS technology to synthesis and layout our turbo decoder, the decoder chip size including pads is 3.03 mm2 with 130k gate counts.

Chinese Abstract... i
English Abstract... ii
Acknowledgement.... iii
Contents........... iv
Table Contents..... vi
Figure Contents.... vii
1 Introduction.....1
1.1 Background..... 1
1.2 Motivations.. 2
1.3 Thesis Outline........ 3
2 Turbo Codes ......4
2.1 Turbo Encoder ........ 5
2.2 Interleavers.......... 6
2.2.1 Block Interleavers......... 6
2.2.2 Random Interleavers........ 7
2.3 Iterative Algorithms.. 8
2.3.1 The MAP Algorithm..... 9
2.3.2 The Max-Log-MAP Algorithm....... 14
2.3.3 The Log-MAP Algorithm........... 16
3 Design and Architecture of the Dual Phase Parallel Turbo Decoder...... 18
3.1 Traditional Sliding Window Technique...... 18
3.2 Parallel Sliding Window Technique......... 19
3.3 Dual Phase Decoding Sliding Window Technique....... 20
3.4 ASIC Architecture of the Dual Phase Parallel Turbo Decoder.. 23
3.4.1 Received Data RAM.......... 24
3.4.2 Interleaver ROM............ 25
3.4.3 Extrinsic Information RAM.. 27
3.4.4 VLSI Architectures of the SISO Decoder........ 30
3.4.4.1 Branch Metrics Unit.. 31
3.4.4.2 State Metrics Unit – Alpha, Beta, and Beta_int........... 31
3.4.4.2.1 ACSO Circuit. 32
3.4.4.2.2 Normalization Circuit....... 33
3.4.4.3 State Metrics Memory.......... 34
3.4.4.4 LLR Unit............ 34
3.4.4.5 Extrinsic Information Unit.... 35
Chapter 4 Verifications of the Dual Phase Parallel Turbo Decoder.. 36
4.1 System Specifications.... 36
4.2 RTL Simulations.......... 38
4.3 Emulations of the FPGA Board....... 40
4.3.1 Power Estimation.... 42
4.4 Chip Synthesis and Layout ..........43
4.5 Implementation Results and Comparisons...... 45
4.5.1 BER Performance..... 46
4.5.2 Power Consumption.......... 46
4.5.3 Chip Size......... 47
4.5.4 Latency and Throughput...... 47
4.5.5 Table Comparison.. 47
Chapter 5 Conclusions....... 48
References......... 49
Appendix:Unpublished Paper. 51


[1]C. E. Shannon, “A mathematical theory of communications – Part I,” Bell Syst. Tech. J., vol. 27, pp. 379-423, 1948.
[2]C. E. Shannon, “A mathematical theory of communications – Part II,” Bell Syst. Tech. J., vol. 27, pp. 623-656, 1948.
[3]C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes,” in IEEE International Communications Conference, pp. 1064 - 1070, 1993.
[4]L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “ Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Transaction on Information Theory, vol. 20, no.2, pp. 284 - 287, March 1974.
[5]C. C. Lin, Y. H. Shih, H. C. Chang, and C. Y. Lee, “ A low power turbo/viterbi decoder for 3GPP2 applications,” IEEE Transactions on Very Large Scale Integration(VLSI) Systems, vol. 14, no. 4, April 2006.
[6]A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 2, Feb. 1998.
[7]E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the MAP algorithm,” IEEE Transactions on Communications, vol. 51, no. 2, pp. 175-185, Feb. 2003.
[8]W. T. Lee, L. F. Yeh, Y. S. Hwang, and J. J. Chen, “ A dummy-beta latency free VLSI architecture for MAP decoder,” in Proc. of The 2006 International Workshop on Multi-project Chip, pp. 86-87, Apr. 2006.
[9]M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “ A 24Mb/s radix-4 LogMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in IEEE International Solid-State Circuits Conference, pp. 150, Feb. 2003.
[10]W. T. Lee, J. L. Ye, Y. S. Hwang, and J. J. Chen, “ A new VLSI architecture for turbo decoder employing de-interleaver table free method,” in Proc. of IEEE International Conference on Communications, Circuits and Systems, pp. 2524-2527, June 2006.
[11]Chen Yang Lin, VLSI Architecture Design of Low Latency Turbo Decoder, Master thesis, National Taipei University of Technology, Taipei, Taiwan, July 2008.
[12]Ming-Chang Lee, Chip Design for a High Speed Turbo Decoder, Master thesis, National Taipei University of Technology, Taipei, Taiwan, July 2004.
[13]C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “A 58mW 1.2mm² HSDPA turbo decoder ASIC in 0.13μm CMOS,” in IEEE International Solid-State Circuits Conference, pp. 264, Feb. 2008.
[14]C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and optimization of an HSDPA turbo decoder ASIC,” IEEE Journal of Solid-State Circuits, vol. 44, no.1, Jan. 2009.
[15]C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2 3GPP-LTE turbo decoder ASIC in 0.13μm CMOS,” in IEEE International Solid-State Circuits Conference, pp. 274, Feb. 2010.
[16]C. C. Wong, M. W. Lai, C. C. Lin, H. C. Chang, and C. Y. Lee, “ Turbo decoder using contention-free interleaver and parallel architecture,” IEEE Journal of Solid-State Circuits, vol. 45, no.2, Feb. 2010.
[17]Min Sheng Chang, VLSI Architecture Design of Parallel Phase Turbo Decoder, Master thesis, National Taipei University of Technology, Taipei, Taiwan, July 2010.
[18]Yue Cheng Tseng, VLSI Architecture Design of Low Power and Low Latency Turbo Decoder, Master thesis, National Taipei University of Technology, Taipei, Taiwan, July 2010.
[19]C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE Journal of Solid-State Circuits, vol. 46, no.1, Jan. 2011.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊