跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 20:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳珏靜
研究生(外文):Chueh-Ching Chen
論文名稱:光波導與表面電漿波整合微機電結構之光電化學感測器研究
論文名稱(外文):The Study of Optoelectrochemical Microsensors Based on MEMS Microstructures and Optical Waveguides with Surface Plasma Wave Exciation
指導教授:張興政
指導教授(外文):Hsing-Cheng Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:76
中文關鍵詞:光波導表面電漿波化學感測器微機電結構
外文關鍵詞:MEMS structuresOptical waveguidesChemcial SensorsSurface plasma wave
相關次數:
  • 被引用被引用:4
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用表面電漿共振(Surface Plasmon Resonance - SPR)之特性與偵測技術,發展即時且多樣之化學量測系統。文中提出光波導、SPR感測器與微懸浮結構整合之微感測系統;並用抗諧振反射光波導(Antiresonant Reflecting Optical Waveguide - ARROW)理論設計微元件光波導,以犧牲層建立懸浮結構與SPR感測結構結合,構成可量測表面電漿波(Surface Plasma Wave - SPW)之化學微感測器,微元件結合光電量測架構,建立完整之化學感測系統,以偵測分析化學溶液成分。微感測器以Matlab軟體模擬分析SPR特性,金屬層之厚度設計為45nm,以Intellsuite軟體模擬分析微結構特性與製作流程,提高製程相容性與製作可行性,並且設計微懸浮平板尺寸分別為2700 × 4800 μm2與3700 × 4800 μm2。微元件尺寸與製作參數確認後,設計微結構光罩圖形,光罩委託交大奈米中心製作。微感測器利用微機電系統(Micro-electromechanical System-MEMS)相關製程技術,於逢甲大學微機電系統與自動化量測實驗室中實現,完整微元件尺寸8mm × 8mm。本化學感測系統以SPR角度分佈量測來檢測乙醇與丙酮等溶液,日後建立相關之資料庫,更可針對不同性質之化學物質進行量測與分析,期對於微生化感測系統之研究有所助益。
A real-time multifunctional chemical measurement system based on the surface plasmon resonance (SPR) technology is developed. The microsensors have proposed in the project that includes optical waveguide, SPR sensor and micro-channel structures. The surface plasma wave (SPW) chemical microsensor is designed with antiresonant reflecting optical waveguide (ARROW), SPR configurations and suspended membrane by sacrificial technology. The chemical detection system is set up with micro device and photoelectron measurement system. The micro device in system can detect and analyze chemical solutions. The SPR property and the optimal thickness of metal layer are designed by Matlab. All micro structures are also done process simulated by Intellsuite. After simulation and analysis, the metal thickness and suspended membrane size are obtained that are 45nm and 2700 × 4800 μm2, 3700 × 4800 μm2 respectively.Whole size of a microsensor is about 8mm × 8mm. The microsensor’s photomask set is design using AutoCAD 2000 based on optimal parameters and then fabricates in NCTU Nano Facility Center. The microsensors have been fabricated by Micro-electromechanical System (MEMS) technology in FCU MEMS & Measurement Automation Lab. A SPR angular coincidence method is used to detect ethanol and acetone. In the future, the system can be applied to detect more chemical solution and then recognizing from the database that will be helpful to develop bio-chemical detection system.
目錄
誌謝I
摘要II
AbstractIII
目錄IV
圖目錄VI
表目錄IX
第一章 緒論1
1.1前言1
1.2文獻探討1
1.2.1表面電漿波之激發架構1
1.2.2表面電漿波感測器與量測技術3
1.3研究動機6
1.4研究方法6
1.5研究流程與論文大綱7
第二章 光波導表面電漿波化學微感測器設計9
2.1光波導表面電漿波原理與應用9
2.1.1表面電漿波理論9
2.1.2 ARROW-B光波導10
2.1.3光波導表面電漿波感測器激發結構設計12
2.2化學微感測器模擬與分析14
2.2.1表面電漿波最佳化模擬14
2.2.2微結構模擬分析與設計18
2.2.3微結構製程模擬與設計21
第三章 微感測元件製程規劃與測試24
3.1化學微感測器光罩設計24
3.1.1矽體凸角蝕刻補償24
3.1.2微結構之光罩與製程設計27
3.1.3對準光罩31
3.2微感測元件製程33
3.2.1光微影製程33
3.2.2高溫氧化製程34
3.2.3矽深蝕刻製程37
3.2.4真空蒸鍍薄膜39
3.2.5溶膠凝膠法42
3.2.6厚膜光阻製程47
第四章 微感測元件製作與量測51
4.1微感測元件製作流程51
4.2微感測器製程實踐與分析56
4.2.1光纖對準結構56
4.2.2 SPR感測結構59
4.2.3微懸浮結構64
4.3光學量測系統設計69
4.3.1光學系統之特性69
4.3.2光學感測系統架構70
4.3.3光學量測系統校準71
第五章 結論73
5.1結論73
5.2後續研究73
參考文獻75
參考文獻
[1]R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in A Diffraction Grating Spectrum,” Phil. Magm., vol.4, pp.396-402, 1902.
[2]E. Kretschmann and H. Raether, “Radiative Decay of Non-Radiative Surface Plasmon Excited by Light,” Z. Physik, vol.216, pp.2135-2136, 1968.
[3]A. Otto, “Excitation of Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. physic, vol.216, pp.398-410, 1968.
[4]J. Homola, I. Koudela and S. S. Yee, “Surface Plasmon Resonance Sensors Based on Diffraction Gratings and Prism Couplers: Sensitivity Comparison,” Sensors and Actuators B, vol.54, pp.16-24, 1999.
[5]R. C. Jorgenson and S. S. Yee, “A Fiber-Optic Chemical Sensor Based on Surface Plasmon Resonance,” Sensors and Actuators B, vol.12, pp.213-220, 1993.
[6]P. V. Lambeck, “Integrated Opto-Chemical Sensors,” Sensors and Actuators B, vol.8, pp.103-116, 1992.
[7]C. Nylander, B. Liedberg and T. Lind, “Gas Detection by Means of Surface Plasmons Resonance,” Sensors and Actuators, vol.3, pp.79-88, 1982.
[8]S. R. Karlsen, K. S. Johnston, S. S. Yee and C. C. Jung, “First-Order Surface Plasmon Resonance Sensor System Based on a Planar Light Pipe,” Sensors and Actuators B, vol.32, pp.137-141, 1996.
[9]B. Liedberg, C. Nylander and I. Lundstrom, “Biosensing with Surface Plasmon Resonance-How It All Started, ” Biosensors Bioelectron, vol.10, pp.Ⅰ- Ⅸ, 1995.
[10]J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor and J. Schrofel, “Surface Plasmon Resonance Biosensor Based on Integrated Waveguide,” Sensors and Actuators B, vol.76, pp.8-12, 2001.
[11]H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee and B. D. Ratner, “Protein Contact Printing for A Surface Plasmon Resonance Biosensor with On-Chip Referencing,” Sensors and Actuators B, vol.74, pp.91-99, 2001.
[12]M. Suzuki, Y. Nakashima and Y. Mori, “SPR Immunosensor Integrated
Two Miniature Enzyme Sensors,” Sensors and Actuators B, vol.54, pp.176-181, 1999.
[13]M. Furuki, J. Kameoka, H. G. Craighead and M. S. Isaacson, “Surface Plasmon Resonance Sensors Utilizing Microfabricated Channels,” Sensors and Actuators B, vol.79, pp.63-69, 2001.
[14]J, Homola, H. B. Lu, G. G. Nenninger, J. Dostalek and S. S. Yee, “A Novel Multichannel Surface Plasmon Resonance Biosensor,” Sensors and Actuators B, vol.76, pp.403-410, 2001.
[15]J. Homola, S. S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors : Review,” Sensors and Actuators B, vol.54, pp3-15, 1999.
[16]S. G. Nelson, K. S. Johnston and S. S. Yee, “High Sensitivity Surface Plasmon Resonance Sensor Based on Phase Detection,” Sensors and Actuators B, vol.35-36, pp.187-191, 1996.
[17]蘇文寬, “利用激發表面電漿波對化學感測器及光電調制器之研究, ” 博士論文, 中正理工學院國防科學研究所, 1999.
[18]魏宏梭, “金屬覆蓋式光纖極化器,” 碩士論文, 清華大學電機工程研究所, 1995.
[19]王俊涵, “新型光纖式表面電漿共振折射計之研發,” 碩士論文, 成功大學機械工程研究所, 2000.
[20]陳信源, “B型抗諧振反射光波導表面電漿子共振化學感測元件之研究,” 碩士論文, 交通大學電子工程研究所, 1996.
[21]李冠卿, “表面電漿振盪之性質、觀測方法與應用”, 科儀新知, 第七卷, 第四期, 1986.
[22]T. Baba and Y. Kokubun, “New Polarization-Insensitive Antiresonant Reflecting Optical Waveguide (SRROW-B) ,” IEEE Photonics Technology Letters, vol. 1, no. 8, pp.232-234, 1989.
[23]T. Baba and Y. Kokubun, “Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides-Numerical Results and Analytical Experssions,” IEEE Journal of Quantum Electronics, vol. 28, no. 7, pp.1689-1700, 1992.
[24]張維容, “B型抗諧振反射光波導表面電漿子共振感測器元件於水中環境應用之研究,” 碩士論文, 交通大學電子工程研究所, 2000.
[25]A. Klekamp, P. Kersten and W. Rehm, “An Improved Single-Mode Y-Branch Design for Cascaded 1:2 Splitters,” Journal of Lightwave Technology, vol. 14, no. 12, pp.2684-2686, 1996.
[26]G. K. Mayer, H. L. Offereins, H. Sandmater and K. Kühl, “Fabrication of Non-Underetched Convex Corners in Anisotropic Etching of (100)-Silicon in Aqueous KOH with Respect to Novel Micromechanic Elements,” J. Electrochem. Soc. 137, 12, pp.3947-3951, 1990.
[27]B. Pures, and W. Sansen, “Compensation Structures for Convex Corner Micromachining in Silicon,” Sensors and Actuators, A21-A23, pp.1036-1041, 1991.
[28]X. Yao, L. Zhang and S. Wang, “Pore Size And Pore-Size Distribution Control of Porous Silica,” Sensors and Actuators B, vol.24-25, pp.347-352, 1995.
[29]U. Kunzelmann and H. Bottcher, “Biosensor Properties of Glucose Oxidase Immobilized within SiO2 Gels,” Sensors and Actuators B, vol.38-39, pp.222-228, 1997.
[30]王致皓, “多孔二氧化矽之研究,” 碩士論文, 清華大學電子工程研究所,1999.
[31]陳慧英, 黃定加與朱秦億, “溶膠凝膠法在薄膜製備上之應用”, 化工技術第七卷, 第十一期, 第152-167頁, 1999.
[32]H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger and P. Renaud, “High-Aspect-Ratio, Ultrathick, Negative-Tone Near-UV Photoresist and Its Applications for MEMS,” Sensors and Actuators A, vol. 64, pp.33-39, 1998.
[33]L. J. Guerin, M. Bossel, M. Demierre, S. Calmes and Ph. Renaud, “Simple and Low Cost Fabrication of Embedded Microchannels by Using A New Thick-Film Photoplastic,” 1997 International Conference on Solid-State Sensors and Actuators , Chicago, pp.1419-1422, June 16-19, 1997.
[34]R. Tobias and J. Stefan, “Soft Micromolding and Lamination of Piezoceramic Thick Films,” Sensors and Actuators A, vol.97-98, pp.512-519, 2002.
[35]楊啟榮, 羅國軒, 黃奇聲與強玲英, SU-8厚膜光阻於微系統UV-LIGA製程的應用,科儀新知, 第二十卷, 五期, 第45 -56頁, 1999.
[36]莊達人, VLSI製造技術, 高立圖書有限公司, 1997.
[37]Hong Xiao著, 羅正忠和張鼎張 譯, 半導體製程技術導論, 台灣培生教育出版有限公司, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top