跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家禾
研究生(外文):Chia-Ho Lin
論文名稱:以生質聚酯多元醇合成水性聚氨酯之研究
論文名稱(外文):Study of Waterborne Polyurethane Synthesized by the Biomass Polyester Polyols
指導教授:蔡平賜蔡平賜引用關係
指導教授(外文):Ping-Szu Tsai
口試委員:蔡平賜王宗櫚何宗漢高立衡
口試委員(外文):Ping-Szu TsaiTzong-Liu WangTsung-Han HoLi-Heng Kao
口試日期:2014-07-23
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系碩士在職專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:70
中文關鍵詞:生質系聚酯多元醇水性聚氨酯陰離子型水性聚氨酯
外文關鍵詞:biomass-based polyester polyolwaterborne polyurethaneanionic type waterborne polyurethane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1818
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:1
近年來在環保議題之下,水性聚氨酯逐漸取代溶劑型聚氨酯。然而在合成原料端,大多以石油系聚酯或聚醚類多元醇當作聚氨酯的軟鏈段。對於石化能源逐漸枯竭的現今,若我們能使用生質系聚酯多元醇取代石油系多元醇,無疑是將生質物質資源化與能源化,兼具能源與環保的雙重貢獻。
本研究選定預聚混合法製程合成陰離子型水性聚氨酯,分別利用 4,4′-二環己基甲烷二異氰酸酯(Dicyclohexylmethane-4,4’-diisocyanate, H12MDI)和3-異氰酸酯基亞甲基-3,5,5-三甲基環己基異氰酸酯(Isophorone diisocyanate, IPDI)為硬鏈節;2,2-二羥甲基丙酸(Dimethylolpropionic acid, DMPA)為水性化離子中心;分子量1000與2000的生質系聚酯多元醇-聚丙二醇丁二酸(Poly propylene succinate, PPS),以及分子量1900的石油系聚醚多元醇-聚丙二醇(Poly oxypropylene glycol, PPG),三種長鏈多元醇為軟鏈節;並分別以乙二醇(1,2-ethylene glycol, 1,2-EG)、1,4-丁二醇(1,4-butylene glycol, 1,4-BG)、1,6-己二醇(1,6-hexylene glycol, 1,6-HG),三種二醇類為預聚反應之鏈延長劑。在固定NCO/OH比例下,使用以上不同合成原料為實驗變因,合成不同配方之水性聚氨酯,並探討水性聚氨酯的黏度、粒徑、物理、機械及化學……等性質的影響。
由FTIR圖譜分析,本研究成功地分別以生質系聚酯多元醇與石油系聚醚多元醇聚合水性聚氨酯。在耐水解性質上,生質系聚酯類水性聚氨酯劣於石油系聚醚類水性聚氨酯。但較高分子量的生質系聚酯多元醇能夠合成出小粒徑、低黏度且熔點高、耐熱性佳的水性聚氨酯。在耐屈折性、耐酚黃、耐UV性及透明度等測試,生質系聚酯類水性聚氨酯及石油系聚醚類水性聚氨酯兩者旗鼓相當。
In recent years, waterborne polyurethane gradually replaces solvent-based polyurethane under the environmental issues. However, in raw material of synthetics, petroleum-based polyester or polyether polyols are still used as soft segments of the polyurethane. Due to the gradual depletion of fossil energy; undoubtedly, it is a great contribution of energy and environmental protection and also make biomass material resources recovery and energy regeneration if we use biomass polyester polyol to replace petroleum-based polyol.
In this research, the pre-polymer mixing process was applied to synthesize anionic type waterborne polyurethane. Dicyclohexylmethane-4,4'-diisocyanate (H12MDI) and isophorone diisocyanate (IPDI) were used as the hard segments. Dimethylolpropionic acid (DMPA) acted as the aqueous ionic center. Three kinds of long-chain polyols, biomass-based polyester polyols which are poly propylene succinates (PPS) with molecular weight of 1000 and 2000 and petroleum-based polyether polyol which is poly oxypropylene glycol (PPG) with molecular weight of 1900 were used as the soft segments. Three kinds of diols, 1,2-ethylene glycol (1,2-EG), 1,4-butylene glycol (1,4-BG) and 1,6-hexylene glycol (1,6-HG) were used as the chain extender of pre-polymers. Different formulations of waterborne polyurethane were synthesized and the effects of their viscosity, particle size, physical, mechanical, chemical and other properties on the different synthetic materials under the fixed NCO/OH ratio were also discussed.
FTIR spectroscopy showed that waterborne polyurethanes produced by biomass-based polyester polyols and petroleum-based polyether polyol were both successfully synthesized. On the test of hydrolysis property, biomass-based polyester waterborne polyurethane is inferior to petroleum-based polyether waterborne polyurethane; however, biomass-based polyester polyol of high molecular weight can synthesize waterborne polyurethane with small particle size, low viscosity, high melting point and good heat resistance. On the tests of flexible resistance, phenol yellowing resistance, UV resistance and transparency, biomass-based polyester is similar to that of petroleum-based polyether waterborne polyurethane.
摘要 I
Abstract III
誌謝 V
總目錄 VI
流程目錄 IX
表目錄 X
圖目錄 XI
附錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究架構 4
第二章 基礎理論與文獻回顧 5
2-1 線性嵌段式PU結構 5
2-2 PU水性化的製程 7
2-2-1 溶液法(Solution process) 7
2-2-2 預聚混合法(Pre-polymer mixing process) 8
2-2-3 熱熔法(Hot melt process)9
2-2-4 酮亞胺和酮連氮法(Ketimine and ketazine process) 10
2-3 PU離子體 11
2-3-1 陰離子型 12
2-3-2 陽離子型 14
2-3-3 非離子型 15
2-4 水性PU的水分散機制與物理安定性質 15
2-4-1 水分散的機制 15
2-4-2 電雙層理論的電荷分布現象 17
2-4-3 成膜性質 19
2-5 影響水性PU機械性質的主要變因 19
2-5-1 離子基含量 19
2-5-2 二異氰酸鹽種類 20
2-5-3 鏈延長劑含量 21
2-5-4 硬質段含量 23
2-5-5 軟質段種類 23
2-5-6 軟質段分子量 24
2-5-7 中和劑種類 25
第三章 實驗 26
3-1 藥品 26
3-2 實驗設備 27
3-3 分析儀器與樣品測試 28
3-3-1 分子鑑定 28
3-3-1-1 紅外光譜 28
3-3-2 水性PU應用基本性質 28
3-3-2-1 黏度 28
3-3-2-2 粒徑分析 28
3-3-2-3 透明度 29
3-3-3 物理與機械性質 29
3-3-3-1 機械性質 29
3-3-3-2 常溫耐屈曲測試 30
3-3-3-3 耐水解測試 30
3-3-3-4 DSC分析 30
3-3-4 化學性質 31
3-3-4-1 耐酚黃測試 31
3-3-4-2 耐UV測試 31
3-4 實驗製程 32
3-4-1 水性PU合成步驟 32
3-4-2 二丁基胺滴定法 36
3-4-3 PU乾膜試片的製備 36
第四章 結果與討論 37
4-1 分子鑑定 37
4-1-1 FTIR光譜分析 37
4-2 水性PU應用基本性質 41
4-2-1 平均粒徑與黏度 41
4-2-2 成膜性質 43
4-2-3 透明度 43
4-3 物理與機械性質 45
4-3-1 機械性質 45
4-3-2 常溫耐屈曲測試 47
4-3-3 耐水解後常溫耐屈曲測試 48
4-3-4 DSC分析 49
4-4 化學性質 52
4-4-1 耐酚黃與耐UV測試 52
第五章 結論 53
第六章 參考文獻 55
附錄 60
自傳 70
【1】 鍾鎔聲, ”熔融紡製聚氨基甲酸酯彈性纖維之研究”, 國立台灣工業技術學院碩士論文, (1994).
【2】 陳瑞瑯, ”幾丁聚醣之去乙醯化度對聚胺基甲酸酯積層薄膜抗菌性及物性之研究”, 國立台灣科技大學碩士論文, (2003).
【3】 D. Dieterich, ”Aqueous emulsions dispersions and solutions of polyurethanes synthesis and properties”, Prog. Org. Coat., 9, 13, 281-340, (1981).
【4】 J. W. Rosthauser, K. Nachtkamp, “Waterborne Polyurethanes”, Journal of coated Fabrics, 16, 16, 39-79, (1986).
【5】 張豐志, “高分子奈米複合材料”, 應用高分子手冊, 14, 347-348, (2003).
【6】 S. K. Kim, J. C. Lee, “Preparation and properties of new polyimides derived from 1,6-diaminodiamantane”, Polymer Science Part A: Polymer Chemistry, 34, 1, 125-131, (1996).
【7】 M. G. Lu, J. Y. Lee, M. J. Shim, S. W. Kim, “Synthesis and properties of anionic aqueous polyurethane dispersions”, Applied Polymer Science, 86, 14, 3461-3465, (2002).
【8】 楊景丞, “Hydroxyl Terminated Polyisoprene(HTIP)陰離子型水性PU合成與性質之研究”, 國立中央大學碩士論文, (2002).
【9】 王世杰, 陳博正, 陳幹男, “水性PU之樹脂改質研究”, The Chinese Chem. SOC., Taipei, 62, 4, 461-472, (2004).
【10】 戴憲弘, 張瑞銘, “特殊聚氨酯(PU)中間體:水分散型異氰酸鹽之分散與應用”, 化工技術期刊, 11, 11, 198-206, (2003).
【11】 張昌榮, “不同硬鏈節水性PU之合成物性及其成型薄膜抗黃變之研究”, 國立台灣科技大學碩士論文, (2004).
【12】 D. Dieterich, “Aqueous emulsions, dispersions and solutions of polyurethanes synthesis and properties”, Progress in Organic Coatings, 9, 3, 281-340, (1981).
【13】 D. J. Hourston, G. Williams, R. Satguru, J. D. Padget, D. Pears, “ Structure–property study of polyurethane anionomers based on various polyols and diisocyanates”, Applied Polymer Science, 66, 10, 2035-2044, (1997).
【14】 B. K. Kim and J. C. Lee, “Waterborne polyurethanes and their properties” Polymer Science Part A: Polymer Chemistry, 34, 6, 1095-1104, (1996).

【15】 D. Dieterich, W. Keberle, H. Witt, “Polyurethane Ionomers, a New Class of Block Polymers” Angewandte Chemie, 9, 1, 40-50, (1970).
【16】 S. A. Chen and W. C. Chan, “Polyurethane Cationomers. I. Structure-property relationships”, Polymer Science Part B: Polymer Physics, 28, 9, 1499-1514, (1990).
【17】 S. A. Chen and J. S. Hsu, “Polyurethane Anionomers. I. Structure-property relationships“, Polymer, 34, 13, 2769-2775, (1993).
【18】 M. G. Lu, J. Y. Lee, M. J. Shim, S. W. Kim. “Synthesis and properties of anionic aqueous polyurethane dispersions”, Applied Polymer Science, 86, 14, 3461-3465, (2002).
【19】 J. S. Lee, B. K. Kim, “Poly (urethane) cationomers from poly(propylene) glycol and isophorone diisocyanate: emulsion characteristics and tensile properties of cast films“, Progress in Organic Coatings, 25, 4, 311-318, (1995).
【20】 B. K. Kim, Y. M. Lee, “Polyurethane Ionomers from Cycloaliphatic Diisocyanate and Polytetramethylene Glycol“, Pure and Applied Chemistry, 29, 12, 1207-1221, (1992).

【21】 B. K. Kim., T. K. Kim, H. M. Jeong, “Aqueous dispersion of polyurethane anionomers from H12MDI/IPDI, PCL, BD, and DMPA”, Applied Polymer Science, 53, 3, 371-378, (1994).
【22】 M. Lahtinen and C. Price, “Aqueous poly (urethane–urea) dispersions and cast films based on m-TMXDL. 1. Structure–property relationships”, Polymer International, 51, 4, 353-361, (2002).
【23】 M. V. Pandya, D. D. Seshande and D. G. Hundiwale, “Thermal behavior of cast polyurethane elastomers” Appl. Polym. Sci, 35, 7, 1803-1815, (1988).
【24】 M. V. Pandya, D. D. Seshande and D. G. Hundiwale, “Thermal behavior of cast polyurethane elastomers” Applied Polymer Science, 35, 7, 1803-1815, (1988).
【25】 Z. S. Petrovic, I. Javni, “The effect of soft-segment length and concentration on phase separation in segmented polyurethanes” Polymer Science Part B: Polymer Physics, 27, 3, 545-560, (1989).
【26】 R. Sandén, N. Wingborg, “Bonding a HTPB liner to modern rocket case materials”, Applied Polymer Science, 37, 1, 167-171, (1989).
【27】 鄭名峰, “熱塑性聚氨基甲酸酯之合成、物性及其在機械零組件上應用之研究”, 國立台灣工業技術學院碩士論文, (1994).
【28】 黃慶忠, “PU彈性體之熱效應”, 化工技術, 11, 2, 22-24, (1988).
【29】 瞿金清, 陳煥欽, “高固含量水性聚氨酯分散體的合成”, 化工學報, 54, 6, 868-871, (2003).
【30】 S. L. Hsu, H. X. Xiao, H. H. Szmant and K. C. Frisch, “Polyurethane ionomers. I. Structure–properties relationships of polyurethane ionomers”, Applied Polymer Science, 29, 8, 2467-2479, (1984).
【31】 S. Y. Lee, J. S. Lee, and B. K. Kim, “Preparation and Properties of Water-borne Polyurethanes”, Polymer International, 42, 1, 67-76, (1997).
【32】 B. K. Kim, J. C. Lee, “Basic structure–property behavior of polyurethane cationomers”, Polymer Science Part A: Polymer Chemistry, 32, 10, 1983-1989, (1994).
【33】 B. K. Kim and J. C. Lee, “Modification of waterborne polyurethanes by acrylate incorporations”, Applied Polymer Science, 58, 7, 1117-1124, (1995).
【34】 Y. Chen and Y-L. Chen, “Aqueous dispersions of polyurethane anionomers: Effect of countercation”, J. Appl. Polym. Sci., 46, 3, 435-443, (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top