中文部分
丁誌榮 (2017)。運用時間序列與軟計算方法以預測台灣五家電信之申訴量。輔仁大學統計資訊學系應用統計碩士在職專班碩士論文 ,新北市。吳昭霖 (2012)。應用SVR預測顧客流失之研究 - 以醫學美容產業為例。國立臺北大學資訊管理研究所碩士論文,台北市。李天傑 (2016)。以倒傳遞類神經網路演算法預測電力消費量 -以台灣地區為例。國立中正大學通訊資訊數位學習碩士在職專班碩士論文,嘉義縣。林雪蓮 (2010)。台灣電信產業營收淨額與營運資金供需預測之研究-X-12-ARIMA模型之應用。國立臺北大學企業管理學系碩士論文,新北市。胡毓庭 (2017)。整合應用機器學習方法以分類多重輸入多重輸出系統之混合管制圖型樣。輔仁大學統計資訊學系應用統計碩士班碩士論文,新北市。張宇丞 (2017)。展示型廣告之效益分析。元智大學資訊管理學系碩士論文,桃園市。郭承林 (2012)。應用資料探勘技術建立顧客流失預測模型-以行動通訊產業為例。國立高雄應用科技大學企業管理系碩士論文,高雄市。
陳佳莉 (2017)。結合謹慎式粒子群演算法與對數最小平方支援向量機於死亡率預測。元智大學資訊管理學系博士論文,桃園市。陳柏榕 (2015)。應用巨量資料分析建構一貫化鋼鐵廠之冷軋產品動態成本預測模型。東海大學工業工程與經營資訊學系碩士論文,台中市。蔡宜珊 (2017)。台灣電力售電量預測之研究-使用ARIMA、機器學習與混合方法。輔仁大學統計資訊學系應用統計碩士在職專班碩士論文 ,新北市。蕭仁滔 (2016)。開放陸客中轉對國籍航空公司運量變化之研究-以類神經網路建立預測模型。國立交通大學管理學院運輸物流學程碩士論文,新竹市。簡壬申 (2017)。類神經網路在股票預測之獲利可能性研究 -以台灣50 成分股為例。國立雲林科技大學財務金融系碩士論文,雲林縣。 英文部分
Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales. Journal of Retailing and Consumer Services, 8(3), 147-156.
Au, K. F., Choi, T. M., & Yu, Y. (2008). Fashion retail forecasting by evolutionary neural networks. International Journal of Production Economics, 114(2), 615-630.
Bianchi, L., Jarrett, J., & Hanumara, R. C. (1998). Improving forecasting for telemarketing centers by ARIMA modeling with intervention. International Journal of Forecasting, 14(4), 497-504.
Box, G. E., & Jenkins, G. M. (1970). Time series analysis, control, and forecasting. San Francisco, CA: Holden Day, 3226(3228), 10.
Chen, F. L., & Ou, T. Y. (2011). Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert Systems with Applications, 38(3), 1336-1345.
Chen, K. Y., & Wang, C.-H. (2007). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, 28(1), 215-226.
Chen, X., Dong, Z. Y., Meng, K., Xu, Y., Wong, K. P., & Ngan, H. W. (2012). Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Transactions on Power Systems, 27(4), 2055-2062.
Cheng, C. H., & Shiu, H. Y. (2014). A novel GA-SVR time series model based on selected indicators method for forecasting stock price. Information Science, Electronics and Electrical Engineering, 1, 395-399.
Co, H. C., & Boosarawongse, R. (2007). Forecasting Thailand’s rice export: Statistical techniques vs. artificial neural networks. Computers & Industrial Engineering, 53(4), 610-627.
Drucker, Harris; Burges, Christopher J. C.; Kaufman, Linda; Smola, Alexander J.; and Vapnik, Vladimir N. (1997).Support Vector Regression Machines, Advances in Neural Information Processing Systems9 .NIPS 1996, 155–161.
Ediger, V. Ş., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, 35(3), 1701-1708.
Farvaresh, H., & Sepehri, M. M. (2011). A data mining framework for detecting subscription fraud in telecommunication. Engineering Applications of Artificial Intelligence, 24(1), 182-194.
Hong, W.-C., Dong, Y., Chen, L.-Y., & Lai, C.-Y. (2010). Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms. Expert Systems with Applications, 37(6), 4452-4462.
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3), 489-501.
Huang, G. B., Chen, L., & Siew, C. K. (2006). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw, 17(4), 879-892.
Huang, J., Bo, Y., & Wang, H. (2011). Electromechanical equipment state forecasting based on genetic algorithm – support vector regression. Expert Systems with Applications, 38(7), 8399-8402.
Kumar, U., & Jain, V. (2010). ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5), 751-760.
Lee, H., Lee, Y., Cho, H., Im, K., & Kim, Y. S. (2011). Mining churning behaviors and developing retention strategies based on a partial least squares (PLS) model. Decision Support Systems, 52(1), 207-216.
Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism Management, 23(4), 389-396.
Lim, J., Nam, C., Kim, S., Rhee, H., Lee, E., & Lee, H. (2012). Forecasting 3G mobile subscription in China: A study based on stochastic frontier analysis and a Bass diffusion model. Telecommunications Policy, 36(10-11), 858-871.
Lin, C.-S. (2013). Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data. Economic Modelling, 35, 207-213.
Ljung, G. M., & Box, G. E. . (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303.
Lu, C.-J., & Wang, Y.-W. (2010). Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. International Journal of Production Economics, 128(2), 603-613.
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth Scientific, London.
Miao, D., Sun, W., Qin, X., & Wang, W. (2016). MSFS: Multiple Spatio-temporal Scales Traffic Forecasting in Mobile Cellular Network. 787-794.
Peng, Y., Lei, M., Li, J.-B., & Peng, X.-Y. (2014). A novel hybridization of echo state networks and multiplicative seasonal ARIMA model for mobile communication traffic series forecasting. Neural Computing and Applications, 24(3), 883-890.
Sokolov-Mladenović, S. M., Milos;Mladenović, Igor;Alizamir, Meysam. (2016). Economic growth forecasting by artificial neural network with extreme learning machine based on trade, import and export parameters. Computers in Human Behavior, 65, 43-45.
Sun, Z. L., Choi, T. M., Au, K. F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46(1), 411-419.
Vapnik, V.N.,Golowich, S.,Smola, A.J.,Mozer, M.,Jordan, M.,Petsche, T. (1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281–287.
Vhatkar, S., & Dias, J. (2016). Oral-care goods sales forecasting using artificial neural network model. Procedia Computer Science, 79, 238-243.
Wang, S. J., Huang, C. T., Wang, W. L., & Chen, Y. H. (2010). Incorporating ARIMA forecasting and service-level based replenishment in RFID-enabled supply chain. International Journal of Production Research, 48(9), 2655-2677.
Yadav, B., Ch, S., Mathur, S., & Adamowski, J. (2017). Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction. Journal of Water and Land Development, 32(1).
Ye, X. (2010). The application of arima model in chinese mobile user prediction. Paper presented at the Granular Computing (GrC), 2010 IEEE International Conference on.
Yu, X., Qi, Z., & Zhao, Y. (2013). Support vector regression for newspaper/magazine sales forecasting. Procedia Computer Science, 17, 1055-1062.
Yu, Y., Choi, T. M., & Hui, C. L. (2011). An intelligent fast sales forecasting model for fashion products. Expert Systems with Applications, 38(6), 7373-7379.
Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks:: The state of the art. International Journal of Forecasting, 14(1), 35-62.
網路資料
中華電信股份有限公司 http://www.cht.com.tw/
台灣大哥大股份有限公司https://www.taiwanmobile.com/
國家傳播委員會網站資料http://www.ncc.gov.tw/
遠傳電信股份有限公司 https://www.fetnet.net/