|
1. Abdel-Misih,S.R. and Bloomston,M. (2010) Liver anatomy. Surg.Clin.North Am., 90, 643-653. 2. Protzer,U., Maini,M.K., and Knolle,P.A. (2012) Living in the liver: hepatic infections. Nat.Rev.Immunol., 12, 201-213. 3. Iredale,J.P. (1997) Tissue inhibitors of metalloproteinases in liver fibrosis. Int.J Biochem.Cell Biol., 29, 43-54. 4. Han,Y.P. (2006) Matrix metalloproteinases, the pros and cons, in liver fibrosis. J.Gastroenterol.Hepatol., 21 Suppl 3, S88-S91. 5. Xu,J., Liu,X., Koyama,Y., Wang,P., Lan,T., Kim,I.G., Kim,I.H., Ma,H.Y., and Kisseleva,T. (2014) The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol., 5, 167. 6. Pellicoro,A., Ramachandran,P., Iredale,J.P., and Fallowfield,J.A. (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat.Rev.Immunol., 14, 181-194. 7. Bataller,R. and Brenner,D.A. (2005) Liver fibrosis. J.Clin.Invest, 115, 209-218. 8. Brown,B., Lindberg,K., Reing,J., Stolz,D.B., and Badylak,S.F. (2006) The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng, 12, 519-526. 9. Iredale,J.P., Thompson,A., and Henderson,N.C. (2013) Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochim.Biophys.Acta, 1832, 876-883. 10. Zeilinger,K., Freyer,N., Damm,G., Seehofer,D., and Knospel,F. (2016) Cell sources for in vitro human liver cell culture models. Exp.Biol.Med.(Maywood.), 241, 1684-1698. 11. van,D.F., Olinga,P., Poelstra,K., and Beljaars,L. (2015) Targeted Therapies in Liver Fibrosis: Combining the Best Parts of Platelet-Derived Growth Factor BB and Interferon Gamma. Front Med.(Lausanne), 2, 72. 12. Tacke,F. and Trautwein,C. (2015) Mechanisms of liver fibrosis resolution. J.Hepatol., 63, 1038-1039. 13. Wells,R.G. (2008) Cellular sources of extracellular matrix in hepatic fibrosis. Clin.Liver Dis., 12, 759-68, viii. 14. Safadi,R. and Friedman,S.L. (2002) Hepatic fibrosis--role of hepatic stellate cell activation. MedGenMed., 4, 27. 15. Gressner,A.M. and Weiskirchen,R. (2006) Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J.Cell Mol.Med., 10, 76-99. 16. He,Y., Huang,C., Zhang,S.P., Sun,X., Long,X.R., and Li,J. (2012) The potential of microRNAs in liver fibrosis. Cell Signal., 24, 2268-2272. 17. Dranoff,J.A. and Wells,R.G. (2010) Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology, 51, 1438-1444. 18. Clouzeau-Girard,H., Guyot,C., Combe,C., Moronvalle-Halley,V., Housset,C., Lamireau,T., Rosenbaum,J., and Desmouliere,A. (2006) Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Invest, 86, 275-285. 19. Desmouliere,A., Darby,I., Costa,A.M., Raccurt,M., Tuchweber,B., Sommer,P., and Gabbiani,G. (1997) Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab Invest, 76, 765-778. 20. Kendall,R.T. and Feghali-Bostwick,C.A. (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol., 5, 123. 21. Iredale,J.P., Thompson,A., and Henderson,N.C. (2013) Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochim.Biophys.Acta, 1832, 876-883. 22. Issa,R., Zhou,X., Constandinou,C.M., Fallowfield,J., Millward-Sadler,H., Gaca,M.D., Sands,E., Suliman,I., Trim,N., Knorr,A., Arthur,M.J., Benyon,R.C., and Iredale,J.P. (2004) Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology, 126, 1795-1808. 23. Pinzani,M. (2015) Pathophysiology of Liver Fibrosis. Dig.Dis., 33, 492-497. 24. Tsuchida,T. and Friedman,S.L. (2017) Mechanisms of hepatic stellate cell activation. Nat.Rev.Gastroenterol.Hepatol., 14, 397-411. 25. Zoubek,M.E., Trautwein,C., and Strnad,P. (2017) Reversal of liver fibrosis: From fiction to reality. Best.Pract.Res.Clin.Gastroenterol., 31, 129-141. 26. Pinzani,M., Marra,F., and Carloni,V. (1998) Signal transduction in hepatic stellate cells. Liver, 18, 2-13. 27. Lee,Y.A., Wallace,M.C., and Friedman,S.L. (2015) Pathobiology of liver fibrosis: a translational success story. Gut, 64, 830-841. 28. Puche,J.E., Saiman,Y., and Friedman,S.L. (2013) Hepatic stellate cells and liver fibrosis. Compr.Physiol, 3, 1473-1492. 29. Machado,M.V., Michelotti,G.A., Pereira,T.A., Boursier,J., Kruger,L., Swiderska-Syn,M., Karaca,G., Xie,G., Guy,C.D., Bohinc,B., Lindblom,K.R., Johnson,E., Kornbluth,S., and Diehl,A.M. (2015) Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut, 64, 1148-1157. 30. Chung,S.I., Moon,H., Ju,H.L., Cho,K.J., Kim,D.Y., Han,K.H., Eun,J.W., Nam,S.W., Ribback,S., Dombrowski,F., Calvisi,D.F., and Ro,S.W. (2016) Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J.Hepatol., 64, 618-627. 31. Jiang,J.X. and Torok,N.J. (2013) Liver Injury and the Activation of the Hepatic Myofibroblasts. Curr.Pathobiol.Rep., 1, 215-223. 32. Canbay,A., Taimr,P., Torok,N., Higuchi,H., Friedman,S., and Gores,G.J. (2003) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest, 83, 655-663. 33. Zhan,S.S., Jiang,J.X., Wu,J., Halsted,C., Friedman,S.L., Zern,M.A., and Torok,N.J. (2006) Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology, 43, 435-443. 34. Ju,C. and Pohl,L.R. (2005) Tolerogenic role of Kupffer cells in immune-mediated adverse drug reactions. Toxicology, 209, 109-112. 35. Kmiec,Z. (2001) Cooperation of liver cells in health and disease. Adv.Anat.Embryol.Cell Biol., 161, III-151. 36. Kolios,G., Valatas,V., and Kouroumalis,E. (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J.Gastroenterol., 12, 7413-7420. 37. Matsuoka,M., Zhang,M.Y., and Tsukamoto,H. (1990) Sensitization of hepatic lipocytes by high-fat diet to stimulatory effects of Kupffer cell-derived factors: implication in alcoholic liver fibrogenesis. Hepatology, 11, 173-182. 38. Matsuoka,M. and Tsukamoto,H. (1990) Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology, 11, 599-605. 39. Park,O., Jeong,W.I., Wang,L., Wang,H., Lian,Z.X., Gershwin,M.E., and Gao,B. (2009) Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology, 49, 1683-1694. 40. Glassner,A., Eisenhardt,M., Kramer,B., Korner,C., Coenen,M., Sauerbruch,T., Spengler,U., and Nattermann,J. (2012) NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest, 92, 967-977. 41. DeLeve,L.D. (2015) Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology, 61, 1740-1746. 42. Kurokawa,T., Zheng,Y.W., and Ohkohchi,N. (2016) Novel functions of platelets in the liver. J.Gastroenterol.Hepatol., 31, 745-751. 43. Nowatari,T., Murata,S., Fukunaga,K., and Ohkohchi,N. (2014) Role of platelets in chronic liver disease and acute liver injury. Hepatol.Res., 44, 165-172. 44. Puche,J.E., Saiman,Y., and Friedman,S.L. (2013) Hepatic stellate cells and liver fibrosis. Compr.Physiol, 3, 1473-1492. 45. Gorbig,M.N., Gines,P., Bataller,R., Nicolas,J.M., Garcia-Ramallo,E., Cejudo,P., Sancho-Bru,P., Jimenez,W., Arroyo,V., and Rodes,J. (2001) Human hepatic stellate cells secrete adrenomedullin: potential autocrine factor in the regulation of cell contractility. J Hepatol., 34, 222-229. 46. Gressner,A.M., Weiskirchen,R., Breitkopf,K., and Dooley,S. (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci., 7, d793-d807. 47. Puche,J.E., Saiman,Y., and Friedman,S.L. (2013) Hepatic stellate cells and liver fibrosis. Compr.Physiol, 3, 1473-1492. 48. Puche,J.E., Saiman,Y., and Friedman,S.L. (2013) Hepatic stellate cells and liver fibrosis. Compr.Physiol, 3, 1473-1492. 49. Xu,F., Liu,C., Zhou,D., and Zhang,L. (2016) TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J Histochem.Cytochem., 64, 157-167. 50. Yang,L., Pang,Y., and Moses,H.L. (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 31, 220-227. 51. Schiller,M., Javelaud,D., and Mauviel,A. (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J.Dermatol.Sci., 35, 83-92. 52. Letterio,J.J. and Roberts,A.B. (1998) Regulation of immune responses by TGF-beta. Annu.Rev.Immunol., 16, 137-161. 53. Ask,K., Bonniaud,P., Maass,K., Eickelberg,O., Margetts,P.J., Warburton,D., Groffen,J., Gauldie,J., and Kolb,M. (2008) Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3. Int.J.Biochem.Cell Biol., 40, 484-495. 54. Munger,J.S., Huang,X., Kawakatsu,H., Griffiths,M.J., Dalton,S.L., Wu,J., Pittet,J.F., Kaminski,N., Garat,C., Matthay,M.A., Rifkin,D.B., and Sheppard,D. (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96, 319-328. 55. Annes,J.P., Munger,J.S., and Rifkin,D.B. (2003) Making sense of latent TGFbeta activation. J.Cell Sci., 116, 217-224. 56. Murphy-Ullrich,J.E. and Poczatek,M. (2000) Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev., 11, 59-69. 57. Biernacka,A., Dobaczewski,M., and Frangogiannis,N.G. (2011) TGF-beta signaling in fibrosis. Growth Factors, 29, 196-202. 58. Papageorgis,P. and Stylianopoulos,T. (2015) Role of TGFbeta in regulation of the tumor microenvironment and drug delivery (review). Int.J Oncol., 46, 933-943. 59. Xu,F., Liu,C., Zhou,D., and Zhang,L. (2016) TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J Histochem.Cytochem., 64, 157-167. 60. Lv,Z. and Xu,L. (2012) Salvianolic Acid B Inhibits ERK and p38 MAPK Signaling in TGF-beta1-Stimulated Human Hepatic Stellate Cell Line (LX-2) via Distinct Pathways. Evid.Based.Complement Alternat.Med., 2012, 960128. 61. Perez-Tamayo,R. (1979) Cirrhosis of the liver: a reversible disease? Pathol.Annu., 14 Pt 2, 183-213. 62. Ezhilarasan,D., Sokal,E., and Najimi,M. (2018) Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary.Pancreat.Dis.Int., 17, 192-197. 63. Kikuchi,A., Pradhan-Sundd,T., Singh,S., Nagarajan,S., Loizos,N., and Monga,S.P. (2017) Platelet-Derived Growth Factor Receptor alpha Contributes to Human Hepatic Stellate Cell Proliferation and Migration. Am.J Pathol., 187, 2273-2287. 64. Xu,F., Zhou,D., Meng,X., Wang,X., Liu,C., Huang,C., Li,J., and Zhang,L. (2016) Smad2 increases the apoptosis of activated human hepatic stellate cells induced by TRAIL. Int.Immunopharmacol., 32, 76-86. 65. Best,J., Zahn,A., Beilfuss,A., Sydor,S., Fingas,C., Sowa,J.P., Anastasiou,O., Cicinnati,V., Gerken,G., Canbay,A., and Bechmann,L.P. (2015) Mycophenolic acid induces apoptosis of hepatic stellate cells in an in vitro model of HCV. Ann.Hepatol., 14, 396-403. 66. Lee,P.J., Woo,S.J., Jee,J.G., Sung,S.H., and Kim,H.P. (2015) Bisdemethoxycurcumin Induces apoptosis in activated hepatic stellate cells via cannabinoid receptor 2. Molecules., 20, 1277-1292. 67. Shim,S.G., Jun,D.W., Kim,E.K., Saeed,W.K., Lee,K.N., Lee,H.L., Lee,O.Y., Choi,H.S., and Yoon,B.C. (2013) Caffeine attenuates liver fibrosis via defective adhesion of hepatic stellate cells in cirrhotic model. J Gastroenterol.Hepatol., 28, 1877-1884. 68. Yu,F.X., Teng,Y.Y., Zhu,Q.D., Zhang,Q.Y., and Tang,Y.H. (2014) Inhibitory effects of capsaicin on hepatic stellate cells and liver fibrosis. Biochem.Cell Biol., 92, 406-412. 69. Aravinthan,A.D. and Alexander,G.J.M. (2016) Senescence in chronic liver disease: Is the future in aging? J Hepatol., 65, 825-834. 70. Campisi,J. (2013) Aging, cellular senescence, and cancer. Annu.Rev.Physiol, 75, 685-705. 71. Jin,H., Lian,N., Zhang,F., Chen,L., Chen,Q., Lu,C., Bian,M., Shao,J., Wu,L., and Zheng,S. (2016) Activation of PPARgamma/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death.Dis., 7, e2189. 72. Chen,J., Xu,T., Zhu,D., Wang,J., Huang,C., Lyu,L., Hu,B., Sun,W., and Duan,Y. (2016) Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway. Cell Death.Dis., 7, e2315. 73. Nishizawa,H., Iguchi,G., Fukuoka,H., Takahashi,M., Suda,K., Bando,H., Matsumoto,R., Yoshida,K., Odake,Y., Ogawa,W., and Takahashi,Y. (2016) IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci.Rep., 6, 34605. 74. Bonnans,C., Chou,J., and Werb,Z. (2014) Remodelling the extracellular matrix in development and disease. Nat.Rev.Mol.Cell Biol., 15, 786-801. 75. Lv,P., Meng,Q., Liu,J., and Wang,C. (2015) Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-beta1. Yonsei Med.J, 56, 1572-1581. 76. Mao,Y.Q. and Fan,X.M. (2015) Autophagy: A new therapeutic target for liver fibrosis. World J Hepatol., 7, 1982-1986. 77. Hernandez-Gea,V., Ghiassi-Nejad,Z., Rozenfeld,R., Gordon,R., Fiel,M.I., Yue,Z., Czaja,M.J., and Friedman,S.L. (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology, 142, 938-946. 78. Hernandez-Gea,V., Hilscher,M., Rozenfeld,R., Lim,M.P., Nieto,N., Werner,S., Devi,L.A., and Friedman,S.L. (2013) Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol., 59, 98-104. 79. Glick,D., Barth,S., and Macleod,K.F. (2010) Autophagy: cellular and molecular mechanisms. J Pathol., 221, 3-12. 80. Onodera,J. and Ohsumi,Y. (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol.Chem., 280, 31582-31586. 81. Bergamini,E. (2006) Autophagy: a cell repair mechanism that retards ageing and age-associated diseases and can be intensified pharmacologically. Mol.Aspects Med., 27, 403-410. 82. Mizushima,N., Levine,B., Cuervo,A.M., and Klionsky,D.J. (2008) Autophagy fights disease through cellular self-digestion. Nature, 451, 1069-1075. 83. Ravikumar,B., Moreau,K., Jahreiss,L., Puri,C., and Rubinsztein,D.C. (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat.Cell Biol., 12, 747-757. 84. Yla-Anttila,P., Vihinen,H., Jokitalo,E., and Eskelinen,E.L. (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy., 5, 1180-1185. 85. Hailey,D.W., Rambold,A.S., Satpute-Krishnan,P., Mitra,K., Sougrat,R., Kim,P.K., and Lippincott-Schwartz,J. (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141, 656-667. 86. Kabeya,Y., Mizushima,N., Ueno,T., Yamamoto,A., Kirisako,T., Noda,T., Kominami,E., Ohsumi,Y., and Yoshimori,T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19, 5720-5728. 87. Cuervo,A.M. (2011) Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity. Nat.Rev.Mol.Cell Biol., 12, 535-541. 88. Bejarano,E., Girao,H., Yuste,A., Patel,B., Marques,C., Spray,D.C., Pereira,P., and Cuervo,A.M. (2012) Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol.Biol.Cell, 23, 2156-2169. 89. Blommaart,E.F., Luiken,J.J., and Meijer,A.J. (1997) Autophagic proteolysis: control and specificity. Histochem.J, 29, 365-385. 90. Mizushima,N. and Yoshimori,T. (2007) How to interpret LC3 immunoblotting. Autophagy., 3, 542-545. 91. Jing,K. and Lim,K. (2012) Why is autophagy important in human diseases? Exp.Mol.Med., 44, 69-72. 92. Mizushima,N. and Yoshimori,T. (2007) How to interpret LC3 immunoblotting. Autophagy., 3, 542-545. 93. Pankiv,S., Clausen,T.H., Lamark,T., Brech,A., Bruun,J.A., Outzen,H., Overvatn,A., Bjorkoy,G., and Johansen,T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol.Chem., 282, 24131-24145. 94. Lichtenstein,A., Minogue,P.J., Beyer,E.C., and Berthoud,V.M. (2011) Autophagy: a pathway that contributes to connexin degradation. J Cell Sci., 124, 910-920. 95. Bjorkoy,G., Lamark,T., Pankiv,S., Overvatn,A., Brech,A., and Johansen,T. (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol., 452, 181-197. 96. Iyyathurai,J., Decuypere,J.P., Leybaert,L., D'hondt,C., and Bultynck,G. (2016) Connexins: substrates and regulators of autophagy. BMC.Cell Biol., 17 Suppl 1, 20. 97. Pugsley,H.R. (2017) Assessing Autophagic Flux by Measuring LC3, p62, and LAMP1 Co-localization Using Multispectral Imaging Flow Cytometry. J Vis.Exp.. 98. Mijaljica,D., Prescott,M., and Devenish,R.J. (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy., 7, 673-682. 99. Li,W.W., Li,J., and Bao,J.K. (2012) Microautophagy: lesser-known self-eating. Cell Mol.Life Sci., 69, 1125-1136. 100. Cuervo,A.M. (2004) Autophagy: many paths to the same end. Mol.Cell Biochem., 263, 55-72. 101. Zaffagnini,G. and Martens,S. (2016) Mechanisms of Selective Autophagy. J Mol.Biol., 428, 1714-1724. 102. Komatsu,M. and Ichimura,Y. (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett., 584, 1374-1378. 103. Bejarano,E. and Cuervo,A.M. (2010) Chaperone-mediated autophagy. Proc.Am.Thorac.Soc., 7, 29-39. 104. Kon,M., Kiffin,R., Koga,H., Chapochnick,J., Macian,F., Varticovski,L., and Cuervo,A.M. (2011) Chaperone-mediated autophagy is required for tumor growth. Sci.Transl.Med., 3, 109ra117. 105. Gewirtz,D.A. (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res, 74, 647-651. 106. Zarzynska,J.M. (2014) The importance of autophagy regulation in breast cancer development and treatment. Biomed.Res Int., 2014, 710345. 107. Chen,P., Cescon,M., and Bonaldo,P. (2014) Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy., 10, 192-200. 108. Boland,B., Kumar,A., Lee,S., Platt,F.M., Wegiel,J., Yu,W.H., and Nixon,R.A. (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci., 28, 6926-6937. 109. Rubinsztein,D.C., Bento,C.F., and Deretic,V. (2015) Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp.Med., 212, 979-990. 110. Li,Z., Wang,J., and Yang,X. (2015) Functions of autophagy in pathological cardiac hypertrophy. Int.J Biol.Sci., 11, 672-678. 111. Jimenez,R.E., Kubli,D.A., and Gustafsson,A.B. (2014) Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. Br.J Pharmacol., 171, 1907-1916. 112. Stienstra,R., Haim,Y., Riahi,Y., Netea,M., Rudich,A., and Leibowitz,G. (2014) Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia, 57, 1505-1516. 113. Barlow,A.D. and Thomas,D.C. (2015) Autophagy in diabetes: beta-cell dysfunction, insulin resistance, and complications. DNA Cell Biol., 34, 252-260. 114. Rey-Jurado,E., Riedel,C.A., Gonzalez,P.A., Bueno,S.M., and Kalergis,A.M. (2015) Contribution of autophagy to antiviral immunity. FEBS Lett., 589, 3461-3470. 115. Thoen,L.F., Guimaraes,E.L., Dolle,L., Mannaerts,I., Najimi,M., Sokal,E., and van Grunsven,L.A. (2011) A role for autophagy during hepatic stellate cell activation. J Hepatol., 55, 1353-1360. 116. Song,Y., Zhao,Y., Wang,F., Tao,L., Xiao,J., and Yang,C. (2014) Autophagy in hepatic fibrosis. Biomed.Res Int., 2014, 436242. 117. Singh,R., Kaushik,S., Wang,Y., Xiang,Y., Novak,I., Komatsu,M., Tanaka,K., Cuervo,A.M., and Czaja,M.J. (2009) Autophagy regulates lipid metabolism. Nature, 458, 1131-1135. 118. Kaushik,S. and Cuervo,A.M. (2015) Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat.Cell Biol., 17, 759-770. 119. Zhang,Z., Zhao,S., Yao,Z., Wang,L., Shao,J., Chen,A., Zhang,F., and Zheng,S. (2017) Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox.Biol., 11, 322-334. 120. Prasad,S., Tyagi,A.K., and Aggarwal,B.B. (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat., 46, 2-18. 121. Anand,P., Thomas,S.G., Kunnumakkara,A.B., Sundaram,C., Harikumar,K.B., Sung,B., Tharakan,S.T., Misra,K., Priyadarsini,I.K., Rajasekharan,K.N., and Aggarwal,B.B. (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem.Pharmacol., 76, 1590-1611. 122. Hewlings,S.J. and Kalman,D.S. (2017) Curcumin: A Review of Its' Effects on Human Health. Foods, 6. 123. Shoba,G., Joy,D., Joseph,T., Majeed,M., Rajendran,R., and Srinivas,P.S. (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 64, 353-356. 124. Sharma,R.A., Euden,S.A., Platton,S.L., Cooke,D.N., Shafayat,A., Hewitt,H.R., Marczylo,T.H., Morgan,B., Hemingway,D., Plummer,S.M., Pirmohamed,M., Gescher,A.J., and Steward,W.P. (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin.Cancer Res, 10, 6847-6854. 125. Ravindranath,V. and Chandrasekhara,N. (1980) Absorption and tissue distribution of curcumin in rats. Toxicology, 16, 259-265. 126. Pan,M.H., Huang,T.M., and Lin,J.K. (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos., 27, 486-494. 127. Ireson,C.R., Jones,D.J., Orr,S., Coughtrie,M.W., Boocock,D.J., Williams,M.L., Farmer,P.B., Steward,W.P., and Gescher,A.J. (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol.Biomarkers Prev., 11, 105-111. 128. Yang,K.Y., Lin,L.C., Tseng,T.Y., Wang,S.C., and Tsai,T.H. (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr.B Analyt.Technol.Biomed.Life Sci., 853, 183-189. 129. Holder,G.M., Plummer,J.L., and Ryan,A.J. (1978) The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica, 8, 761-768. 130. Aggarwal,B.B., Deb,L., and Prasad,S. (2014) Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules., 20, 185-205. 131. Shehzad,A., Wahid,F., and Lee,Y.S. (2010) Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch.Pharm (Weinheim), 343, 489-499. 132. Pari,L. and Murugan,P. (2007) Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren Fail., 29, 881-889. 133. Pari,L. and Amali,D.R. (2005) Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. J Pharm Pharm Sci., 8, 115-123. 134. Wilken,R., Veena,M.S., Wang,M.B., and Srivatsan,E.S. (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol.Cancer, 10, 12. 135. Ramakrishnan,R., Elangovan,P., and Pari,L. (2017) Protective Role of Tetrahydrocurcumin: an Active Polyphenolic Curcuminoid on Cadmium-InducedOxidative Damage in Rats. Appl.Biochem.Biotechnol., 183, 51-69. 136. Muthumani,M. and Miltonprabu,S. (2015) Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chem.Biol.Interact., 235, 95-105. 137. Monthana Weerawatanakorn, Shu-Chen Hsieh, Mei-Ling Tsia, Ching-Shu Lai, Li-Mei Wu, Vladimir Badmaev, Chi-Tang Ho, and Min-Hsiung Pan. Inhibitory effect of tetrahydrocurcumin on dimethylnitrosamine-induced liver fibrosis in rats. Journal of Functional Foods 7, 305-313. 20140. 138. Mei-Ling Tsai, Sia-Ping Tsai, and Chi-Tang Ho. Tetrahydrocurcumin attenuates carbon tetrachloride-induced hepatic fibrogenesis by inhibiting the activation and autophagy of hepatic stellate cells. Journal of Functional Foods 36, 418-428. 2017. 139. Hong,J., Bose,M., Ju,J., Ryu,J.H., Chen,X., Sang,S., Lee,M.J., and Yang,C.S. (2004) Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis, 25, 1671-1679. 140. Kim,J.M., Araki,S., Kim,D.J., Park,C.B., Takasuka,N., Baba-Toriyama,H., Ota,T., Nir,Z., Khachik,F., Shimidzu,N., Tanaka,Y., Osawa,T., Uraji,T., Murakoshi,M., Nishino,H., and Tsuda,H. (1998) Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis, 19, 81-85. 141. Atsumi,T., Fujisawa,S., and Tonosaki,K. (2005) Relationship between intracellular ROS production and membrane mobility in curcumin- and tetrahydrocurcumin-treated human gingival fibroblasts and human submandibular gland carcinoma cells. Oral Dis., 11, 236-242. 142. Huang,M.T., Ma,W., Lu,Y.P., Chang,R.L., Fisher,C., Manchand,P.S., Newmark,H.L., and Conney,A.H. (1995) Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis, 16, 2493-2497. 143. Osawa,T., Sugiyama,Y., Inayoshi,M., and Kawakishi,S. (1995) Antioxidative activity of tetrahydrocurcuminoids. Biosci.Biotechnol.Biochem., 59, 1609-1612. 144. Nakamura,Y., Ohto,Y., Murakami,A., Osawa,T., and Ohigashi,H. (1998) Inhibitory effects of curcumin and tetrahydrocurcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn.J Cancer Res, 89, 361-370. 145. Pan,M.H., Lin-Shiau,S.Y., and Lin,J.K. (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem.Pharmacol., 60, 1665-1676. 146. Okada,K., Wangpoengtrakul,C., Tanaka,T., Toyokuni,S., Uchida,K., and Osawa,T. (2001) Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr., 131, 2090-2095. 147. Murugan,P. and Pari,L. (2006) Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sci., 79, 1720-1728. 148. Murugan,P. and Pari,L. (2007) Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats. Basic Clin.Pharmacol.Toxicol., 101, 241-245. 149. Murugan,P. and Pari,L. (2007) Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. J Ethnopharmacol., 113, 479-486. 150. Murugan,P. and Pari,L. (2006) Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin-nicotinamide experimental diabetes. J Basic Clin.Physiol Pharmacol., 17, 231-244. 151. Pari,L. and Murugan,P. (2007) Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes. Fundam.Clin.Pharmacol., 21, 665-671. 152. Somparn,P., Phisalaphong,C., Nakornchai,S., Unchern,S., and Morales,N.P. (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol.Pharm Bull., 30, 74-78. 153. Naito,M., Wu,X., Nomura,H., Kodama,M., Kato,Y., Kato,Y., and Osawa,T. (2002) The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J Atheroscler.Thromb., 9, 243-250. 154. Sugiyama,Y., Kawakishi,S., and Osawa,T. (1996) Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem.Pharmacol., 52, 519-525. 155. Kang,N., Wang,M.M., Wang,Y.H., Zhang,Z.N., Cao,H.R., Lv,Y.H., Yang,Y., Fan,P.H., Qiu,F., and Gao,X.M. (2014) Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem.Toxicol., 67, 193-200. 156. Yoysungnoen,P., Wirachwong,P., Changtam,C., Suksamrarn,A., and Patumraj,S. (2008) Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol., 14, 2003-2009. 157. Deleve,L.D., Wang,X., and Guo,Y. (2008) Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology, 48, 920-930. 158. Liu,X., Xu,J., Brenner,D.A., and Kisseleva,T. (2013) Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts. Curr.Pathobiol.Rep., 1, 209-214. 159. Huang,R., Vivekanandan,S., Brender,J.R., Abe,Y., Naito,A., and Ramamoorthy,A. (2012) NMR characterization of monomeric and oligomeric conformations of human calcitonin and its interaction with EGCG. J Mol.Biol., 416, 108-120. 160. Klionsky,D.J., Abdalla,F.C., et al., (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy., 8, 445-544. 161. Rubinsztein,D.C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 443, 780-786. 162. Nakamura,S. and Yoshimori,T. (2017) New insights into autophagosome-lysosome fusion. J Cell Sci., 130, 1209-1216. 163. Geng,Y., Kohli,L., Klocke,B.J., and Roth,K.A. (2010) Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro.Oncol., 12, 473-481. 164. Zaidi,A.U., McDonough,J.S., Klocke,B.J., Latham,C.B., Korsmeyer,S.J., Flavell,R.A., Schmidt,R.E., and Roth,K.A. (2001) Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. J Neuropathol.Exp.Neurol., 60, 937-945. 165. Mizushima,N., Yoshimori,T., and Levine,B. (2010) Methods in mammalian autophagy research. Cell, 140, 313-326. 166. Popov,S., Popova,E., Inoue,M., and Gottlinger,H.G. (2008) Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J.Virol., 82, 1389-1398. 167. Uemitsu,N. and Nakayoshi,H. (1984) Evaluation of liver weight changes following a single oral administration of carbon tetrachloride in rats. Toxicol.Appl.Pharmacol., 75, 1-7. 168. Hall,A.P., Elcombe,C.R., Foster,J.R., Harada,T., Kaufmann,W., Knippel,A., Kuttler,K., Malarkey,D.E., Maronpot,R.R., Nishikawa,A., Nolte,T., Schulte,A., Strauss,V., and York,M.J. (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes--conclusions from the 3rd International ESTP Expert Workshop. Toxicol.Pathol., 40, 971-994. 169. Giannini,E.G., Testa,R., and Savarino,V. (2005) Liver enzyme alteration: a guide for clinicians. CMAJ., 172, 367-379. 170. WROBLEWSKI,F. (1958) The clinical significance of alterations in transaminase activities of serum and other body fluids. Adv.Clin.Chem., Vol. 1, 313-351. 171. Atsumi,T., Tonosaki,K., and Fujisawa,S. (2007) Comparative cytotoxicity and ROS generation by curcumin and tetrahydrocurcumin following visible-light irradiation or treatment with horseradish peroxidase. Anticancer Res, 27, 363-371. 172. Standish,R.A., Cholongitas,E., Dhillon,A., Burroughs,A.K., and Dhillon,A.P. (2006) An appraisal of the histopathological assessment of liver fibrosis. Gut, 55, 569-578.
|