跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥伸
研究生(外文):You Shen Chen
論文名稱:以低溫法溶液技術製備鈣鈦礦型太陽能電池
論文名稱(外文):Preparation of Perovskite Solar Cells Using Low-temperature Solution Processing techniques
指導教授:吳國梅
指導教授(外文):G. M. Wu
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:鈣鈦礦太陽能電池氧化鋅低溫
外文關鍵詞:perovskitesolar cellsZnOlow-temperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
太陽能是一種再生能源,發電過程中不會產生溫室氣體二氧化碳的排放,對於環境的保護有很大的幫助;自2012年來鈣鈦礦太陽能電池進步快速,跟矽晶型太陽能電池相比,其優勢有材料成本低、使用溶液法製備、製程成本低,且其光電轉換效率可望追上矽晶型太陽能電池,許多科學家也紛紛投入心力在此研究上。
鈣鈦礦太陽能電池中鈣鈦礦層製作的方式大致分為兩種,一種是使用一步驟法製作,就是把甲基胺碘(MAI)跟碘化鉛(PbI2)兩者等莫爾比例溶入DMF後旋塗在基板上;而兩步驟法則是先在基板上旋塗上PbI2,成膜之後再浸泡或滴上甲基胺碘成長鈣鈦礦結晶;本實驗使用兩步驟法製作。
實驗中我們發現改變PbI2的靜置時間後會影響其不同的成膜型態,靜置時間越久PbI2的顆粒聚集的程度就越大進而導致鈣鈦礦的結晶型態也會有所不同,從XRD上可以觀察到不同PbI2靜置時間的鈣鈦礦薄膜在(001)特徵峰有明顯的變化,靜置時間在150s時峰值最小,代表利用靜置時間150s製作的PbI2薄膜跟30mg/mL的MAI溶液有最佳的結晶狀態。我們成功的做出效率達10.57%的鈣鈦礦太陽能電池,JSC達16.85mA/cm2,VOC為1.01V,F.F.為61.9%,之後也在持續性量測發現在第4天可達最高效率12.65%。
除了碘化鉛跟甲基胺碘兩者濃度跟碘化鉛靜置時間的探討外,為了提高元件的穩定性,我們也嘗試加入介孔層觀察元件的表現,首先我們直接在ZnO緻密層上製作TiO2介孔層,再以兩步驟法來製作元件,我們改變了不同旋塗速度來製作介孔層,效率最高的電池JSC只達8.89mA/cm2,VOC能達到1.04V,F.F.為50.4%,效率為4.66%,結果顯示這些條件下我們的元件並未有更好的表現。另外我們也嘗試使用TTIP及TiO2(P90)兩者以不同溶液體積比製作緻密層來取代ZnO緻密層,發現了在完全無添加TTIP的條件下,電池效率可達7.94%,再以此條件進一步的改變轉速控制不同的介孔層薄膜,可以再1500rpm條件製作出效率為10.39%的元件,其JSC可達16.82mA/cm2,VOC為1.008V,F.F.為61.3%。

Solar is a renewable energy, Power generation process does not produce greenhouse gases carbon dioxide emissions, for the protection of the environment is very helpful; from 2012 to the rapid progress of perovskite solar cells, compared with silicon solar cells, which have the advantages of low material cost, Preparation of solution method, low cost manufacturing process, and its photoelectric conversion efficiency of silicon solar cells is expected to catch up, many scientists have also invested in this research effort.
Perovskite solar cells perovskite layer made way roughly divided into two types, one is to use the one-step production, is to methylamine iodide (MAI) with lead iodide (PbI2) both Moore and other dissolved proportion after DMF was spin-coated on a substrate; and a two-step rule is the first spin-coated on a substrate PbI2, then soaked after film or iodine drops methylamine grow perovskite crystalline; used in this experiment produced a two-step method.
We found that the changed PbI2 standing time will affect their different deposition patterns, the extent of the longer standing PbI2 the aggregation of particles leading to greater perovskite crystal patterns will vary from can be observed on the XRD perovskite films of different PbI2 standing time in the (001) peak characteristic changes significantly, standing at the time when the minimum peak 150s, 150s on behalf of the use of standing time making PbI2 film with 30mg/mL of MAI has the best solution crystalline state. Our success to make efficiency of 10.57% perovskite solar cells, JSC of 16.85mA/cm2, VOC is 1.01V, F.F. of 61.9%, also after continuous measurements found in the first four days up to maximum efficiency 12.65 %.
Discussion with the addition of lead iodide standing time of lead iodide with methyl iodide amine concentration both outside, in order to improve the stability of the device, we also try to join the mesoporous layer observation element of the performance, first we direct the dense layer on the ZnO production of mesoporous TiO2 layer, then a two-step method to create elements, we change the spin speed to create different mesoporous layer, only the most efficient battery JSC of 8.89mA/cm2, VOC can reach 1.04V, F.F. of 50.4% efficiency of 4.66%, showed that under these conditions we did not have better cell performance. In addition, we also try to use the TTIP and TiO2(P90) to two different solution volume ratio of production to replace the dense layer of dense ZnO layer found in full without adding TTIP conditions, cell efficiency of up to 7.94%, then this condition further change speed control different mesoporous layer film, you can then create the conditions 1500rpm efficiency of 10.39% of the element JSC up 16.82mA/cm2, VOC is 1.008V, F.F. was 61.3%.

目 錄
指導教授推薦書
口試委員會審定書
誌謝 iii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2太陽能電池介紹 4
1.2.1 無機太陽能電池 5
1.2.2 有機太陽能電池 7
1.2.3 染料敏化太陽能電池 11
第二章 鈣鈦礦太陽能電池原理與文獻回顧 14
2.1 鈣鈦礦結構源起 14
2.2 鈣鈦礦敏化太陽能電池 15
2.3 鈣鈦礦太陽能電池工作原理 17
2.4 研究動機 19
第三章 實驗方法 24
3.1 實驗藥品與儀器 24
3.2 藥品合成及溶液配製 26
3.2.1 MAI合成 26
3.2.2 ZnO前驅液配製 26
3.2.3 TiO2溶液配製 27
3.2.4 PbI2溶液配置 27
3.2.5 MAI溶液配置 27
3.2.6 Spiro-OMeTAD溶液配置 27
3.3 鈣鈦礦太陽能電池製備流程.....................................................29
3.3.1 ITO基板蝕刻及清洗......................................................30
3.3.2 UV-ozone處理.......................................................31
3.3.3 ZnO緻密層製備.............................................................31
3.3.4 TiO2介孔層製備...........................................................31
3.3.5 PbI2薄膜製備.............................................................32
3.3.6 鈣鈦礦薄膜製備 32
3.3.7 旋塗spiro-OMeTAD......................................................32
3.3.8 刮出對電極 33
3.3.9 蒸鍍氧化鉬及銀對電極.................................................33
第四章 結果與討論 34
4.1 以不同材料比例製備鈣鈦礦...................................................35
4.1.1 不同PbI2濃度 35
4.1.2 不同MAI濃度 36
4.2 PbI2靜置時間對於鈣鈦礦層的影響.......................................38
4.3 不同spiro-OMeTAD旋塗條件對於元件的影響....................42
4.4 元件長時間穩定性量測...........................................................44
4.5 加入不同厚度介孔層對於元件表現的影響...........................45
4.6 以P90-TiO2/TTIP介孔層代替ZnO緻密層............................47
4.6.1 不同轉速介孔層對於元件表現的影響.........................48
4.6.2 不同濃度介孔對於元件表現的影響.........................49
第五章 結論 51
第六章 未來建議 52
參考文獻 53

圖目錄
圖1-1 美國再生能源實驗室(NREL)至2015年5月統計之太陽能電池最佳效率之分析圖[1]。 3
圖1-2 太陽能電池種類分類圖。 5
圖1-3 P-N接面示意圖。 6
圖1-4 有機高分子P3HT及有機小分子PCBM。.....................................9
圖1-5 染料敏化太陽能電池結構及工作原理示意圖[13]。...................12
圖2-1 鈣鈦礦晶體結構示意圖[14]。 14
圖2-2 鈣鈦礦敏化太陽能電池結構示意圖,(a)含有介孔層的鈣鈦礦敏化太陽能電池結構,(b)平面介面型鈣鈦礦太陽能電池結構[19]。 16
圖2-3 鈣鈦礦晶體結構示意圖[20]。 17
圖2-4 鈣鈦礦太陽能電池結構(左)及材料能階(右)示意圖。................18
圖2-5 以ZnO緻密層為基底的鈣鈦礦太陽能電池示意圖[23]。...........20
圖2-6 不同厚度ZnO緻密層的元件表現參數[23]。...............................20
圖3-1 鈣鈦礦太陽能電池製作流程圖。.................................................29
圖3-2 鈣鈦礦太陽能電池製作流程示意圖:(a)ITO玻璃 (b)ITO玻璃蝕刻 (c)旋塗ZnO緻密層 (d)鈣鈦礦層製備(e)旋塗spiro-OMeTAD (f)刮出對電極 (g)蒸鍍MoO3 (h)蒸鍍銀電極。 30
圖4-1 以不同碘化鉛濃度製作的鈣鈦礦太陽能電池I-V曲線圖。......35
圖4-2 以不同MAI濃度製作的鈣鈦礦太陽能電池I-V曲線圖。.........36
圖4-3 不同靜置時間的PbI2薄膜上視圖。.............................................39
圖4-4不同PbI2靜置時間的鈣鈦礦薄膜上視圖。...................................40
圖4-5 以不同PbI2靜置時間製作的鈣鈦礦太陽能電池I-V曲線圖。..41
圖4-6 以不同PbI2靜置時間製作的鈣鈦礦XRD曲線圖。....................41
圖4-7 以不同PbI2靜置時間製作的鈣鈦礦覆蓋率參數。.....................42
圖4-8 不同spiro-OMeTAD轉速條件的鈣鈦礦太陽能電池I-V曲線圖。 42
圖4-9 不同spiro-OMeTAD轉速條件的鈣鈦礦太陽能電池參數趨勢圖。 43
圖4-10 不同放置天數的鈣鈦礦太陽能電池I-V曲線圖。....................44
圖4-11 不同介孔層(TiO2)轉速條件鈣鈦礦太陽能電池I-V曲線圖。 46
圖4-12 TiO2溶液與TTIP不同體積比鈣鈦礦太陽能電池I-V曲線圖。 47
圖4-13 不同TiO2轉速鈣鈦礦太陽能電池I-V曲線圖。........................48
圖4-14 不同TiO2濃度鈣鈦礦太陽能電池I-V曲線圖。........................50

表目錄
表4-1 以不同碘化鉛濃度製作的鈣鈦礦太陽能電池元件參數。.........35
表4-2 以不同MAI濃度製作的鈣鈦礦太陽能電池元件參數。............37
表4-3 以不同PbI2靜置時間製作的鈣鈦礦太陽能電池元件參數。.....41
表4-4 不同spiro-OMeTAD轉速的鈣鈦礦太陽能電池元件參數。......43
表4-5 不同放置天數的鈣鈦礦太陽能電池元件參數。.........................44
表4-6 不同介孔層(TiO2)轉速條件鈣鈦礦太陽能電池元件參數。......46
表4-7 TiO2溶液與TTIP不同體積比鈣鈦礦太陽能電池元件參數。 47
表4-8 不同TiO2轉速鈣鈦礦太陽能電池元件參數。............................49
表4-9 不同TiO2濃度鈣鈦礦太陽能電池元件參數。............................50

〔1〕 NREL, NREL Efficiency Chart, 美.N.至.年. 所統計之太陽能電池最佳效率之研究分析圖(Ed.), NREL, 2015
〔2〕 蔡孟諺,《有機薄膜太陽能電池簡介》,國家實驗研究院儀器科技研究中心,民國98年10月。
〔3〕 黃建榮,《有機太陽能技術發展》,NO.111,光連雙月刊,2014年5月。
〔4〕 J. Tsukamoto, H. Ohigashi, K. Matsumura, A. Takahashi, Jpn. J. Appl. Phys. 20, L127 (1981).
〔5〕 G.Yu, C.Zhang, A.J Heeger, Appl.Phys.Lett. 64, 1540 (1994).
〔6〕 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
〔7〕 S.E Shaheen, C.J Brabec, N.S. Sariciftci…etl, Appl. Phys Lett. 78, 841 (2001).
〔8〕 F. Padinger, R.S Rittberger and N.S Sariciftci, Adv. Funct. Mater13, 85 (2003).
〔9〕 D. Chirvase, J. Parisi, J.C Hummelen, V. Dyakonov,Nanotechnology 15, 1317 (2004).
〔10〕 J. Huang, G. Li and Y. Yang, Appl, Phys. Lett. 87, 112105 (2005).
〔11〕 G. Li, V. Shortriya, Y. Yao and Y. Yang, J. Appl. Phys. 98, 043704 (2005).
〔12〕 Y. Yang…etl, Chem.Phys.Lett. 411, 138 (2005).
〔13〕 陳信宏,《染料敏化太陽能電池近期發展》No.84,光連雙月刊,2009年11月。
〔14〕 Mingzhen Liu, M.B. Johnston & H.J. Snaith, "Efficient planar heterjunction perovskite solar cells by vapour deposion", Nature, 19 September 2013.
〔15〕 A. Kojima, K. Teshima, Y.Shirai, T. Miyasaka, Organometal Halide Perovskite as Visible-Light Sensitizer for Photovoltaic Cells, J. Am. Chen. Soc., 131(2009)6050.
〔16〕 J.-H. Im , C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3(2011)4088-4093.
〔17〕 H.-S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R.H. Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci Rep, 2(2012)7.
〔18〕 Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J-P, Gao P, Scopelliti R, Mosconi E, Dahmen KH, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK, "A molecularly engineered hole-transporting material for efficient perovskite solar cells", Nature Energy 15017, 18 January 2016, DOI: 10.1038/NENERGY.2015.17.
〔19〕 北京浩克科技有限公司,應用領域-太陽能電池,2015-05-28。
〔20〕 Chelsea Whyte, Disorder on Nanoscale May Be Responsible for Solar-cell Efficiency, BROOKHAVEN, Apil-22-2014.
〔21〕 F. Brivio, A.B. walker, A. walsh, "Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles", APL Mater, 1(2013)5.
〔22〕 S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer,T. Leijtens1, L.M. Herz, A. Petrozza, H.J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber", Science, 342(2013)341-344.
〔23〕 Dianyi Liu, Timothy L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques",Nature Photonics, December 2013.
〔24〕 Ziaul Raza Khan, Mohd Shoeb Khan, Mohammad Zulfequar, Mohd Shahid Khan, "Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method", Materials Sciences and Applications, 2011.
〔25〕 Shao-Hsuan Kao, Zong-Liang Tseng, Ping-Yi Ho, Chia-Yu Kao, Subramani Thiyagu and Ching-Fuh Lin, "Significance of the ZnO nanorod array morphology for low-bandgap polymer solar cells in inverted structures", J. Mater. Chem. A, 2013.
〔26〕 Lusheng Liang, Zhifeng Huang, Longhua Cai, Weizhong Chen, Baozeng Wang, Kaiwu Chen, Hua Bai, Qingyong Tian, and Bin Fan, "Magnetron Sputtered Zinc Oxide Nanorods as Thickness-Insensitive Cathode Interlayer for Perovskite Planar-Heterojunction Solar Cells", ACS Appl. Mater. Interfaces , 2014.
〔27〕 Xu Dong, Hongwei Hu, Bencai Lin, Jianning Ding and Ningyi Yuan, "The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures", Chem. Commun., 2014.
〔28〕 Juan Dong, Yanhong Zhao, Jiangjian Shi, Huiyun Wei, Junyan Xiao, Xin Xu, Jianheng Luo, Jing Xu, Dongmei Li, Yanhong Luo and Qingbo Meng, " Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification", Chem. Commun., 2014.
〔29〕 Khalid Mahmood, Bhabani Sankar Swain and Hyun Suk Jung, "Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells", Nanoscale, April 2014.
〔30〕 Khalid Mahmood, Bhabani S. Swain and Aram Amassian, "Double-layered ZnO nanostructures for efficient perovskite solar cells", Nanoscale, October 2014.
〔31〕 Junghwan Kim, Geunjin Kim, Tae Kyun Kim, Sooncheol Kwon, Hyungcheol Back, Jinho Lee, Seoung Ho Lee, Hongkyu Kang and Kwanghee Lee, "Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer", J. Mater. Chem. A, August 2014.
〔32〕 Jeong-Hyeok Im, In-Hyuk Jang, Norman Pellet, Michael Grätzel and Nam-Gyu Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells", NATURE NANOTECHNOLOGY, August 2014.
〔33〕 Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, "Interface engineering of highly efficient perovskite solar cells", SCIENCE, August 2014.
〔34〕 Jacob Tse-Wei Wang, James M. Ball, Eva M. Barea, Antonio Abate, Jack A. Alexander-Webber, Jian Huang, Michael Saliba, Iván Mora-Sero, Juan Bisquert, Henry J. Snaith, and Robin J. Nicholas, "Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells", Nano Lett., 2014.
〔35〕 A. Kojima, K. Teshima, Y.Shirai, T. Miyasaka, "Organometal Halide Perovskite as Visible-Light Sensitizer for Photovoltaic Cells", J. Am. Chen. Soc., 131(2009)6050.
〔36〕 J.H. Im, I.H. jang, N.Pellet, M. Gratzel, N.G. Park, "Growth of CH3NH3PbI3 cuboids with controlled side for high-efficiency perovskite solar cells", Nat. Nanotechnol., 9(2014)927-932.
〔37〕 William H. Nguyen, Colin D. Bailie, Eva L. Unger, and Michael D. McGehee, "Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells", J. Am. Chem. Soc., 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top