|
1.Tiselius, A., A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 1937, 33 (0), 524-531. 2.Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of instrumental analysis 5th. 3.Bien, D. C. S.; Rainey, P. V.; Mitchell, S. J. N.; Gamble, H. S., Characterization of masking materials for deep glass micromachining. J. Micromech. Microeng. 2003, 13 (4), S34. 4.Fan, Z. H.; Harrison, D. J., Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 1994, 66 (1), 177-184. 5.Johirul, M.; Shiddiky, A.; Kim, R.-E.; Shim, Y.-B., Microchip capillary electrophoresis with a cellulose-DNA-modified screen-printed electrode for the analysis of neurotransmitters. Electrophoresis 2005, 26 (15), 3043-3052. 6.Dolník, V.; Liu, S.; Jovanovich, S., Capillary electrophoresis on microchip. Electrophoresis 2000, 21 (1), 41-54. 7.Becker, H.; Gärtner, C., Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000, 21 (1), 12-26. 8.Becker, H.; Locascio, L. E., Polymer microfluidic devices. Talanta 2002, 56 (2), 267-287. 9.Luo, Y.; Wang, X.-D.; Yang, F., Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. J. Mater. Process. Technol. 2008, 208 (1–3), 63-69. 10.McCormick, R. M.; Nelson, R. J.; Alonso-Amigo, M. G.; Benvegnu, D. J.; Hooper, H. H., Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates. Anal. Chem. 1997, 69 (14), 2626-2630. 11.Ocvirk, G.; Munroe, M.; Tang, T.; Oleschuk, R.; Westra, K.; Harrison, D. J., Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 2000, 21 (1), 107-115. 12.Rossier, J.; Reymond, F.; Michel, P. E., Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 2002, 23 (6), 858-867. 13.張百齊., 劉., 遠東學報 十九期, 372-376. 14.Dauer, S.; Ehlert, A.; Büttgenbach, S., Rapid prototyping of micromechanical devices using a Q-switched Nd:YAG laser with optional frequency doubling. Sens. Actuators, A 1999, 76 (1–3), 381-385. 15.Lim, D.; Kamotani, Y.; Cho, B.; Mazumder, J.; Takayama, S., Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 2003, 3. 16.Dyer, P. E., Excimer laser polymer ablation: twenty years on. Appl. Phys. A 2003, 77 (2), 167-173. 17.Roberts, M. A.; Rossier, J. S.; Bercier, P.; Girault, H., UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. Anal. Chem. 1997, 69 (11), 2035-2042. 18.劉海北, 雷射的原理與應用. 19.Klank, H.; Kutter, J. P.; Geschke, O., CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2002, 2 (4), 242-246. 20.Wang, S.-C.; Lee, C.-Y.; Chen, H.-P., Thermoplastic microchannel fabrication using carbon dioxide laser ablation. J. Chromatogr. A 2006, 1111 (2), 252-257. 21.Qi, H.; Chen, T.; Yao, L.-Y.; Zuo, T.-C., Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt. Laser Eng. 2009, 47 (5), 594-598. 22.Pfleging, W.; Kohler, R.; Schierjott, P.; Hoffmann, W., Laser patterning and packaging of CCD-CE-Chips made of PMMA. Sens. Actuators, B 2009, 138 (1), 336-343. 23.Ma, B.; Zhou, X.-M.; Wang, G.; Huang, H.-Q.; Dai, Z.-P.; Qin, J.-H.; Lin, B.-C., Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids. Electrophoresis 2006, 27 (24), 4904-4909. 24.Götz, S.; Karst, U., Recent developments in optical detection methods for microchip separations. Anal. Bioanal. Chem. 2007, 387 (1), 183-192. 25.Sikanen, T.; Franssila, S.; Kauppila, T. J.; Kostiainen, R.; Kotiaho, T.; Ketola, R. A., Microchip technology in mass spectrometry. Mass Spectrom. Rev. 2010, 29 (3), 351-391. 26.Mark, J. J. P.; Scholz, R.; Matysik, F. M., Electrochemical methods in conjunction with capillary and microchip electrophoresis. J. Chromatogr. A 2012, 1267, 45-64. 27.Coltro, W. K. T.; Lima, R. S.; Segato, T. P.; Carrilho, E.; de Jesus, D. P.; do Lago, C. L.; da Silva, J. A. F., Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development. Anal. Methods 2012, 4 (1), 25-33. 28.Ghanim, M. H.; Abdullah, M. Z., Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: Recent developments. Talanta 2011, 85 (1), 28-34. 29.Xu, J.-J.; Wang, A.-J.; Chen, H.-Y., Electrochemical detection modes for microchip capillary electrophoresis. TrAC, Trends Anal. Chem. 2007, 26 (2), 125-132. 30.Dou, Y. H.; Bao, N.; Xu, J. J.; Chen, H. Y., A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis. Electrophoresis 2002, 23 (20), 3558-3566. 31.Wang, J.; Tian, B.; Sahlin, E., Micromachined Electrophoresis Chips with Thick-Film Electrochemical Detectors. Anal. Chem. 1999, 71, 5436-5440. 32.Zeng, Y.; Chen, H.; Pang, D.-W.; Wang, Z.-L.; Cheng, J.-K., Microchip Capillary Electrophoresis with Electrochemical Detection. Anal. Chem. 2002, 74 2441–2445. 33.Baldwin, R. P.; Roussel, T. J.; Crain, M. M.; Bathlagunda, V.; Jackson, D. J.; Gullapalli, J.; Conklin, J. A.; Pai, R.; Naber, J. F.; Walsh, K. M.; Keynton, R. S., Fully Integrated On-Chip Electrochemical Detection for Capillary Electrophoresis in a Microfabricated Device. Anal. Chem. 2002, 74 (15), 3690-3697. 34.Chen, D.-C.; Hsu, F.-L.; Zhan, D.-Z.; Chen, C.-H., Palladium Film Decoupler for Amperometric Detection in Electrophoresis Chips. Anal. Chem. 2001, 73 (4), 758-762. 35.Yan, J.-L.; Du, Y.; Liu, J.-F.; Cao, W.-D.; Sun, X.-H.; Zhou, W.-H.; Yang, X.-R.; Wang, E.-K., Fabrication of Integrated Microelectrodes for Electrochemical Detection on Electrophoresis Microchip by Electroless Deposition and Micromolding in Capillary Technique. Anal. Chem. 2003, 75 (20), 5406-5412. 36.Kong, Y.; Chen, H.-W.; Wang, Y.-R.; Soper, S. A., Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating. Electrophoresis 2006, 27 (14), 2940-2950. 37.Hebert, N. E.; Snyder, B.; McCreery, R. L.; Kuhr, W. G.; Brazill, S. A., Performance of Pyrolyzed Photoresist Carbon Films in a Microchip Capillary Electrophoresis Device with Sinusoidal Voltammetric Detection. Anal. Chem. 2003, 75, 4265-4271. 38.Vickers, J. A.; Dressen, B. M.; Weston, M. C.; Boonsong, K.; Chailapakul, O.; Cropek, D. M.; Henry, C. S., Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry. Electrophoresis 2007, 28 (7), 1123-1129. 39.Martin, R. S.; Ratzlaff, K. L.; Huynh, B. H.; Lunte, S. M., In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat. Anal. Chem. 2002, 74 (5), 1136-1143. 40.Ding, Y.-S.; Ayon, A.; García, C. D., Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis. Anal. Chim. Acta 2007, 584 (2), 244-251. 41.Kovarik, M. L.; Li, M. W.; Martin, R. S., Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry. Electrophoresis 2005, 26 (1), 202-210. 42.Rossier, J. S.; Ferrigno, R.; Girault, H. H., Electrophoresis with electrochemical detection in a polymer microdevice. J. Electroanal. Chem. 2000, 492 (1), 15-22. 43.Selimovic, A.; Johnson, A. S.; Kiss, I. Z.; Martin, R. S., Use of epoxy‐embedded electrodes to integrate electrochemical detection with microchip‐based analysis systems. Electrophoresis 2011, 32 (8), 822-831. 44.Pentecost, A. M.; Martin, R. S., Fabrication and characterization of all-polystyrene microfluidic devices with integrated electrodes and tubing. Anal. Methods 2015, 7 (7), 2968-2976. 45.Chen, C.-H.; Lin, Y.-T.; Lin, M.-S., Fabrication of a totally renewable off-channel amperometric platform for microchip electrophoresis. Anal. Chim. Acta 2015, 874, 33-39. 46.Erkal, J. L.; Selimovic, A.; Gross, B. C.; Lockwood, S. Y.; Walton, E. L.; McNamara, S.; Martin, R. S.; Spence, D. M., 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 2014, 14 (12), 2023-2032. 47.Munshi, A. S.; Martin, R. S., Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device. Analyst 2016, 141 (3), 862-869. 48.Wallingford, R. A.; Ewing, A. G., Capillary zone electrophoresis with electrochemical detection. Anal. Chem. 1987, 59 (14), 1762-1766. 49.Qian, J.-H.; Wu, Y.-Q.; Yang, H.; Michael, A. C., An Integrated Decoupler for Capillary Electrophoresis with Electrochemical Detection: Application to Analysis of Brain Microdialysate. Anal. Chem. 1999, 71 (20), 4486-4492. 50.Osbourn , D. M.; Lunte, C. E., On-Column Electrochemical Detection for Microchip Capillary Electrophoresis. Anal. Chem. 2003, 75, 2710-2714. 51.Nagai, H.; Matsubara, M.; Chayama, K.; Urakawa, J.; Shibutani, Y.; Tanaka, Y.; Takeda, S.; Wakida, S., Fabrication of Electrophoretic PDMS/PDMS Lab-on-a-chip Integrated with Au Thin-Film Based Amperometric Detection for Phenolic Chemicals. In Atmospheric and Biological Environmental Monitoring, Kim, Y. J.; Platt, U.; Gu, M. B.; Iwahashi, H., Eds. Springer Netherlands: Dordrecht, 2009; pp 275-284. 52.Kok, W. T.; Sahin, Y., Solid-state field decoupler for off-column detection in capillary electrophoresis. Anal. Chem. 1993, 65 (18), 2497-2501. 53.Lu, W.; Cassidy, R. M., Background noise in capillary electrophoretic amperometric detection. Anal. Chem. 1994, 66 (2), 200-204. 54.Wu, C.-C.; Wu, R.-G.; Huang, J.-G.; Lin, Y.-C.; Chang, H.-C., Three-Electrode Electrochemical Detector and Platinum Film Decoupler Integrated with a Capillary Electrophoresis Microchip for Amperometric Detection. Anal. Chem. 2003, 75, 947-952. 55.Lacher, N. A.; Lunte, S. M.; Martin, R. S., Development of a Microfabricated Palladium Decoupler/Electrochemical Detector for Microchip Capillary Electrophoresis Using a Hybrid Glass/Poly(dimethylsiloxane) Device. Anal. Chem. 2004, 76 (9), 2482-2491. 56.Kim, J.-H.; Kang, C.-J.; Jeon, D.; Kim, Y.-S., A disposable capillary electrophoresis microchip with an indium tin oxide decoupler/amperometric detector. Microelectron. Eng. 2005, 78–79, 563-570. 57.Vickers, J. A.; Henry, C. S., Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection. Electrophoresis 2005, 26 (24), 4641-4647. 58.Lin, K.-W.; Huang, Y.-K.; Su, H.-L.; Hsieh, Y.-Z., In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis. Anal. Chim. Acta 2008, 619 (1), 115-121. 59.Johnson, A. S.; Selimovic, A.; Martin, R. S., Integration of microchip electrophoresis with electrochemical detection using an epoxy‐based molding method to embed multiple electrode materials. Electrophoresis 2011, 32 (22), 3121-3128. 60.Tanyanyiwa, J.; Leuthardt, S.; Hauser, P. C., Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis. Electrophoresis 2002, 23 (21), 3659-3666. 61.Mayrhofer, K.; Zemann, A. J.; Schnell, E.; Bonn, G. K., Capillary Electrophoresis and Contactless Conductivity Detection of Ions in Narrow Inner Diameter Capillaries. Anal. Chem. 1999, 71 (17), 3828-3833. 62.Fracassi da Silva, J. A.; do Lago, C. L., An Oscillometric Detector for Capillary Electrophoresis. Anal. Chem. 1998, 70 (20), 4339-4343. 63.Polta, J. A.; Johnson, D. C., Pulsed amperometric detection of electroinactive adsorbates at platinum electrodes in a flow injection system. Anal. Chem. 1985, 57 (7), 1373-1376. 64.Altunata, S.; Earley, R. L.; Mossman, D. M.; Welch, L. E., Pulsed electrochemical detection of penicillins using three and four step waveforms. Talanta 1995, 42 (1), 17-25. 65.Olson, M. P.; Keating, L. R.; LaCourse, W. R., Indirect pulsed electrochemical detection of amino acids and proteins following high performance liquid chromatography. Anal. Chim. Acta 2009, 652 (1–2), 198-204. 66.Keating, L. R.; LaCourse, W. R., Indirect pulsed electrochemical detection of aliphatic carboxylate-containing analytes following high performance anion-exchange chromatography. Talanta 2016, 146, 594-602. 67.Baumann, E. W.; Wallace, R. M., Cupric-selective electrode with copper(II)-EDTA for end point detection in chelometric titrations of metal ions. Anal. Chem. 1969, 41 (14), 2072-2074. 68.Olin, Å.; Wallién, B., Determination of citrate by potentiometric titration with copper(II) and a copper ion-selective electrode. Anal. Chim. Acta 1983, 151, 65-75. 69.Loscombe, C. R.; Cox, G. B.; Dalziel, J. A. W., Application of a copper electrode as a detector for high-peformance liquid chromatography. J. Chromatogr. A 1978, 166 (2), 403-410. 70.El-Taras, M. F.; Pungor, E.; Nagy, G., The influence of some organic complexing agents on the potential of copper(II) - selective electrodes. application of the silicone rubber-based electrode to the determination of citrate ion and 8-hydroxyquinoline. Anal. Chim. Acta 1976, 82 (2), 285-292. 71.Alexander, P. W.; Maitra, C., Continuous-flow potentiometric monitoring of .alpha.-amino acids with copper wire and tubular electrodes. Anal. Chem. 1981, 53 (11), 1590-1594. 72.Kok, W. T.; Hanekamp, H. B.; Bos, P.; Frei, R. W., Amperometric detection of amino acids with a passivated copper electrode. Anal. Chim. Acta 1982, 142, 31-45. 73.Huang, T.-K.; Lin, K.-W.; Tung, S.-P.; Cheng, T.-M.; Chang, I.-C.; Hsieh, Y.-Z.; Lee, C.-Y.; Chiu, H.-T., Glucose sensing by electrochemically grown copper nanobelt electrode. J. Electroanal. Chem. 2009, 636 (1–2), 123-127. 74.Mei, L.; Zhang, P.-C.; Chen, J.-Y.; Chen, D.-D.; Quan, Y.; Gu, N.; Zhang, G.-H.; Cui, R.-J., Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim. Acta 2016, 183 (4), 1359-1365. 75.Felix, S.; Kollu, P.; Raghupathy, B. P. C.; Jeong, S. K.; Grace, A. N., Electrocatalytic activity of Cu2O nanocubes based electrode for glucose oxidation. J. Chem. Sci. 2014, 126 (1), 25-32. 76.Choudhry, N. A.; Kampouris, D. K.; Kadara, R. O.; Jenkinson, N.; Banks, C. E., Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using copper(ii) oxide screen printed electrodes. Anal. Methods 2009, 1 (3), 183-187. 77.Watabe, S.; Kamal, M.; Hashimoto, K., Postmortem Changes in ATP, Creatine Phosphate, and Lactate in Sardine Muscle. J. Food Sci. 1991, 56, 151-153. 78.林怡伶, 一夜干水產品品質與化學組成特性及貯藏期間之變化. 中華民國102年6月. 79.Olafsdóttir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Mackie, I. M.; Henehan, G.; Nielsen, J.; Nilsen, H., Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 1997, 8 (8), 258-265. 80.衛生署。1998。冷凍食品類衛生標準,衛署食字第87032655號公告. 81.Baixas-Nogueras , S.; Bover-Cid , S.; Vidal-Carou , M. C.; Veciana-Nogués , M. T.; Mariné-Font, A., Trimethylamine and Total Volatile Basic Nitrogen Determination by Flow Injection/Gas Diffusion in Mediterranean Hake (Merluccius merluccius). J. Agric. Food Chem. 2001, 49, 1681-1686. 82.Ashraf, P. M.; Lalitha, K. V.; Edwin, L., Synthesis of polyaniline hybrid composite: A new and efficient sensor for the detection of total volatile basic nitrogen molecules. Sens. Actuators, B 2015, 208, 369-378. 83.Luong, J. H. T.; Male, K. B.; Masson , C.; Nguyen, A. L., Hypoxanthine Ratio Determination in Fish Extract Using Capillary Electrophoresis and Immobilized Enzymes. J. Food Sci. 1992, 57, 77-81. 84.Saito, T.; Arai, K.; Matsuyoshi, M., A new method for estimating the freshness of fish. Bull. Jpn. Soc. Sci. Fish. 1959, 24, 749-750. 85.Karube, I.; Matsuoka, H.; Suzuki, S.; Watanabe, E.; K., T., Determination of Fish Freshness with an Enzyme Sensor System J. Agric. Food Chem. 1984, 32, 314-319. 86.Ryder, J. M., Determination of adenosine triphosphate and its breakdown products in fish muscle by high-performance liquid chromatography. J. Agric. Food Chem. 1985, 33, 678-680. 87.Okuma, H.; Watanabe, E., Flow system for fish freshness determination based on double multi-enzyme reactor electrodes. Biosens Bioelectron. 2002, 17 (5), 367-372. 88.Watanabe, E.; Tamada, Y.; Hamada-Sato, N., Development of quality evaluation sensor for fish freshness control based on KI value. Biosens Bioelectron. 2005, 21 (3), 534-538. 89.蔡文榮, 市售秋刀魚之組織胺相關衛生品質及其貯藏試驗探討. 民國103年2月. 90.Leurs, R.; Hough, L. B.; Blandina, P.; Haas, H. L., Chapter 16 - Histamine A2 - Brady, Scott T. In Basic Neurochemistry (Eighth Edition), Siegel, G. J.; Albers, R. W.; Price, D. L., Eds. Academic Press: New York, 2012; pp 323-341. 91.FDA (2001)Scombrotoxin (histamine) formation. Ch.7. In Fish and Fishery Products Hazards and Controls Guidance. 3rd ed., p. 83-102. Food and Drug Administration, Center for Safety and Applied Nutrition, Office of Seafood, Washington, DC. 92.Frattini, V.; Lionetti, C., Histamine and histidine determination in tuna fish samples using high-performance liquid chromatography: Derivatization with o-phthalaldehyde and fluorescence detection or UV detection of “free” species. J. Chromatogr. A 1998, 809 (1–2), 241-245. 93.Kutlán, D.; Presits, P.; Molnár-Perl, I., Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde/3-mercaptopropionic acid and with o-phthaldialdehyde/N-acetyl-l-cysteine reagents. J. Chromatogr. A 2002, 949 (1–2), 235-248. 94.Lange, J.; Thomas, K.; Wittmann, C., Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. J. Chromatogr. B 2002, 779 (2), 229-239. 95.Oguri, S.; Enami, M.; Soga, N., Selective analysis of histamine in food by means of solid-phase extraction cleanup and chromatographic separation. J. Chromatogr. A 2007, 1139 (1), 70-74. 96.Fischer, J. E.; Snyder, S. H.; James, J. H.; Baldessarini, R., Histamine and serotonin metabolism following massive small bowel resection. Ann. Surg. 1972, 175 (2), 260-267. 97.Wang, Z.-P.; Wu, J.-L.; Wu, S.-H.; Bao, A.-M., High-performance liquid chromatographic determination of histamine in biological samples: The cerebrospinal fluid challenge – A review. Anal. Chim. Acta 2013, 774, 1-10. 98.Peng, J.-F.; Fang, K.-T.; Xie, D.-H.; Ding, B.; Yin, J.-Y.; Cui, X.-M.; Zhang, Y.; Liu, J.-F., Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection. J. Chromatogr. A 2008, 1209 (1–2), 70-75. 99.Yoshitake, T.; Ichinose, F.; Yoshida, H.; Todoroki, K. I.; Kehr, J.; Inoue, O.; Nohta, H.; Yamaguchi, M., A sensitive and selective determination method of histamine by HPLC with intramolecular excimer‐forming derivatization and fluorescence detection. Biomed. Chromatogr. 2003, 17 (8), 509-516. 100.Zhang, L.-Y.; Sun, M.-X., Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection. J. Chromatogr. A 2004, 1040 (1), 133-140. 101.Liu, X.; Yang, L.-X.; Lu, Y.-T., Determination of biogenic amines by 3-(2-furoyl)quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A 2003, 998 (1–2), 213-219. 102.Singh, G.; Mangat, S. S.; Sharma, H.; Singh, J.; Arora, A.; Singh Pannu, A. P.; Singh, N., Design and syntheses of novel fluorescent organosilicon-based chemosensors through click silylation: detection of biogenic amines. RSC Adv. 2014, 4 (69), 36834-36844. 103.Kielland, N.; Vendrell, M.; Lavilla, R.; Chang, Y.-T., Imaging histamine in live basophils and macrophages with a fluorescent mesoionic acid fluoride. Chem. Commun. 2012, 48 (59), 7401-7403. 104.Seong, D. Y.; Choi, M.-S.; Kim, Y.-J., Fluorescent chemosensor for the detection of histamine based on dendritic porphyrin-incorporated nanofibers. Eur. Polym. J. 2012, 48 (12), 1988-1996. 105.Gustiananda, M.; Andreoni, A.; Tabares, L. C.; Tepper, A. W. J. W.; Fortunato, L.; Aartsma, T. J.; Canters, G. W., Sensitive detection of histamine using fluorescently labeled oxido-reductases. Biosens Bioelectron. 2012, 31 (1), 419-425. 106.El-Nour, K. M. A.; Salam, E. T. A.; Soliman, H. M.; Orabi, A. S., Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines. Nanoscale Res. Lett. 2017, 12 (1), 231. 107.Gao, F.; Grant, E.; Lu, X.-N., Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. Anal. Chim. Acta 2015, 901, 68-75. 108.Weng, Q.-F.; Xia, F.-Q.; Jin, W.-R., Determination of Histamine by Capillary Zone Electrophoresis with End‐Column Amperometric Detection at a Carbon Fiber Microdisk Array Electrode. Electroanalysis 2001, 13 (17), 1459-1461. 109.Manica, D. P.; Mitsumori, Y.; Ewing, A. G., Characterization of Electrode Fouling and Surface Regeneration for a Platinum Electrode on an Electrophoresis Microchip. Anal. Chem. 2003, 75 (17), 4572-4577. 110.吳佳儀, 可供組織胺檢測的毛細管電泳電化學晶片之研發. 2005. 111.Švarc‐Gajić, J.; Stojanović, Z., Electrocatalytic Determination of Histamine on a Nickel-Film Glassy Carbon Electrode. Electroanalysis 2010, 22 (24), 2931-2939. 112.Sarada, B. V.; Rao, T. N.; Tryk, D. A.; Fujishima, A., Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem. 2000, 72 (7), 1632-1638. 113.Degefu, H.; Amare, M.; Tessema, M.; Admassie, S., Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples. Electrochim. Acta 2014, 121, 307-314. 114.Geto, A.; Tessema, M.; Admassie, S., Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synth. Met. 2014, 191, 135-140. 115.陳正慧, 還原態氧化石墨烯與雙胺氧化酵素固定化網版印刷碳電極於食品組織胺之檢測. 2014. 116.Alonso-Lomillo, M. A.; Dominguez-Renedo, O.; Matos, P.; Arcos-Martinez, M. J., Disposable biosensors for determination of biogenic amines. Anal. Chim. Acta 2010, 665. 117.Zeng, K.; Tachikawa, H.; Zhu, Z.; Davidson, V. L., Amperometric Detection of Histamine with a Methylamine Dehydrogenase Polypyrrole-Based Sensor. Anal. Chem. 2000, 72 (10), 2211-2215. 118.Takagi, K.; Shikata, S., Flow injection determination of histamine with a histamine dehydrogenase-based electrode. Anal. Chim. Acta 2004, 505 (2), 189-193. 119.Yang, M.-H.; Zhang, J.-L.; Chen, X., Competitive electrochemical immunosensor for the detection of histamine based on horseradish peroxidase initiated deposition of insulating film. J. Electroanal. Chem. 2015, 736, 88-92. 120.Feuerstein, B. G.; Pattabiraman, N.; Marton, L. J., Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 1990, 18 (5), 1271-1282. 121.Halász, A.; Baráth, Á.; Simon-Sarkadi, L.; Holzapfel, W., Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994, 5 (2), 42-49. 122.Kalac̆, P.; Krausová, P., A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90 (1–2), 219-230. 123.Warthesen, J. J.; Scanlan, R. A.; Bills, D. D.; Libbey, L. M., Formation of heterocyclic N-nitrosamines from the reaction of nitrite and selected primary diamines and amino acids. J. Agric. Food Chem. 1975, 23 (5), 898-902. 124.Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Mariné-Font, A.; Vidal-Carou, M. C., Biogenic Amine and Polyamine Contents in Meat and Meat Products. J. Agric. Food Chem. 1997, 45 (6), 2098-2102. 125.Larqué, E.; Sabater-Molina, M.; Zamora, S., Biological significance of dietary polyamines. Nutrition 2007, 23 (1), 87-95. 126.Mietz, J. L.; Karmas, E., Chemical quality index of canned tuna as determined by high-pressure liquid chromatography. J. Food Sci. 1977, 42 (1), 155-158. 127.Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Vidal-Carou, M. C., Biogenic Amine Sources in Cooked Cured Shoulder Pork. J. Agric. Food Chem. 1996, 44, 3097-3101. 128.Khuhawar, M. Y.; Qureshi, G. A., Polyamines as cancer markers: applicable separation methods. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 764 (1–2), 385-407. 129.Mohammed, G. I.; Bashammakh, A. S.; Alsibaai, A. A.; Alwael, H.; El-Shahawi, M. S., A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. TrAC, Trends Anal. Chem. 2016, 78, 84-94. 130.Löser, C.; Wunderlich, U.; Fölsch, U. R., Reversed-phase liquid chromatographic separation and simultaneous fluorimetric detection of polyamines and their monoacetyl derivatives in human and animal urine, serum and tissue samples: An improved, rapid and sensitive method for routine application. J. Chromatogr. B: Biomed. Sci. Appl. 1988, 430, 249-262. 131.Latorre-Moratalla, M. L.; Bosch-Fusté, J.; Lavizzari, T.; Bover-Cid, S.; Veciana-Nogués, M. T.; Vidal-Carou, M. C., Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food. J. Chromatogr. A 2009, 1216 (45), 7715-7720. 132.Preti, R.; Antonelli, M. L.; Bernacchia, R.; Vinci, G., Fast determination of biogenic amines in beverages by a core–shell particle column. Food Chem. 2015, 187, 555-562. 133.Wu, Q.-H.; Su, Y.-Q.; Yang, L. H.; Li, J.-C.; Ma, J.-J.; Wang, C.; Li, Z.-P., Determination of polyamines by high-performance liquid chromatography with chemiluminescence detection. Microchim. Acta 2007, 159 (3), 319-324. 134.Liu, J.-F.; Yang, X.-R.; Wang, E.-K., Direct tris(2,2''‐bipyridyl)ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis. Electrophoresis 2003, 24 (18), 3131-3138. 135.Dobberpuhl, D. A.; Hoekstra, J. C.; Johnson, D. C., Pulsed electrochemical detection at gold electrodes applied to monoamines and diamines following their chromatographic separation. Anal. Chim. Acta 1996, 322 (1), 55-62. 136.Hoekstra, J. C.; Johnson, D. C., Waveform optimization for integrated square-wave detection of biogenic amines following their liquid chromatographic separation. Anal. Chim. Acta 1999, 390 (1–3), 45-54. 137.Koppang, M. D.; Witek, M.; Blau, J.; Swain, G. M., Electrochemical Oxidation of Polyamines at Diamond Thin-Film Electrodes. Anal. Chem. 1999, 71 (6), 1181-1195. 138.Morier-teissier, E.; Drieu, K.; Rips, R., Determination of Polyamines by Pre-Column Derivatization and Electrochemical Detection. J. Liq. Chromatogr. 1988, 11 (8), 1627-1650. 139.Maruta, K.; Teradaira, R.; Watanabe, N.; Nagatsu, T.; Asano, M.; Yamamoto, K.; Matsumoto, T.; Shionoya, Y.; Fujita, K., Simple, sensitive assay of polyamines by high-performance liquid chromatography with electrochemical detection after post-column reaction with immobilized polyamine oxidase. Clin. Chem. 1989, 35 (8), 1694. 140.Esti , M.; Volpe , G.; Massignan , L.; Compagnone , D.; Notte , E. L.; G., P., Determination of Amines in Fresh and Modified Atmosphere Packaged Fruits Using Electrochemical Biosensors. J. Agric. Food Chem. 1998, 46, 4233-4237. 141.Carelli, D.; Centonze, D.; Palermo, C.; Quinto, M.; Rotunno, T., An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron. 2007, 23 (5), 640-647. 142.Compagnone, D.; Isoldi, G.; Moscone, D.; Palleschi, G., Amperometric detection of biogenic amines in cheese using immobilized diamine oxidase. Anal. Lett. 2001, 34 (6), 841-854. 143.Henao-Escobar, W.; Domínguez-Renedo, O.; Asunción Alonso-Lomillo, M.; Julia Arcos-Martínez, M., Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor. Talanta 2013, 117, 405-411. 144.Wimmerová, M.; Macholán, L., Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens Bioelectron. 1999, 14 (8–9), 695-702. 145.Bóka, B.; Adányi, N.; Virág, D.; Sebela, M.; Kiss, A., Spoilage Detection with Biogenic Amine Biosensors, Comparison of Different Enzyme Electrodes. Electroanalysis 2012, 24 (1), 181-186. 146.Rochette, J. F.; Sacher, E.; Meunier, M.; Luong, J. H. T., A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal. Biochem. 2005, 336 (2), 305-311. 147.Manz, A.; Graber, N.; Widmer, H. M., Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators, B 1990, 1 (1), 244-248. 148.Le Roux, D.; Root, B. E.; Reedy, C. R.; Hickey, J. A.; Scott, O. N.; Bienvenue, J. M.; Landers, J. P.; Chassagne, L.; de Mazancourt, P., DNA Analysis Using an Integrated Microchip for Multiplex PCR Amplification and Electrophoresis for Reference Samples. Anal. Chem. 2014, 86 (16), 8192-8199. 149.Han, J.; Singh, A. K., Rapid protein separations in ultra-short microchannels: microchip sodium dodecyl sulfate–polyacrylamide gel electrophoresis and isoelectric focusing. J. Chromatogr. A 2004, 1049 (1–2), 205-209. 150.Zhang, Y.; Zhang, Y.; Wang, G.; Chen, W.-J.; Li, Y.; Zhang, Y.-T.; He, P.; Wang, Q.-J., Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking. J. Chromatogr. B 2016, 1025, 33-39. 151.Wang, J.; Chen, G.; Muck Jr, A.; Chatrathi, M. P.; Mulchandani, A.; Chen, W., Microchip enzymatic assay of organophosphate nerve agents. Anal. Chim. Acta 2004, 505 (2), 183-187. 152.Bao, N.; Xu, J.-J.; Dou, Y.-H.; Cai, Y.; Chen, H.-Y.; Xia, X.-H., Electrochemical detector for microchip electrophoresis of poly(dimethylsiloxane) with a three-dimensional adjustor. J. Chromatogr. A 2004, 1041 (1–2), 245-248. 153.Ding, Y.-S.; Garcia, C.-D., Application of microchip‐CE electrophoresis to follow the degradation of phenolic acids by aquatic plants. Electrophoresis 2006, 27 (24), 5119-5127. 154.Chen, Z.-F.; Gao, Y.-H.; Lin, J.-M.; Su, R.-G.; Xie, Y., Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template. J. Chromatogr. A 2004, 1038 (1–2), 239-245. 155.Muck, A. J.; Wang, J.; Jacobs, M.; Chen, G.; Chatrathi, M. P.; Jurka, V.; Výborný, Z.; Spillman, S. D.; Sridharan, G.; Schöning, M. J., Fabrication of Poly(methyl methacrylate) Microfluidic Chips by Atmospheric Molding. Anal. Chem. 2004, 76, 2290–2297. 156.Lai, C.-C.; Chen, C.-H.; Ko, F.-H., In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. J. Chromatogr. A 2004, 1023 (1), 143-150. 157.Hebert , N. E.; Kuhr , W. G.; Brazill, S. A., A Microchip Electrophoresis Device with Integrated Electrochemical Detection: A Direct Comparison of Constant Potential Amperometry and Sinusoidal Voltammetry. Anal. Chem. 2003, 75, 3301-3307. 158.Wilke, R.; Büttgenbach, S., A Micromachined Capillary Electrophoresis Chip With Fully Integrated Electrodes for Separation and Electrochemical Detection. Biosens Bioelectron. 2003, 19, 149-153. 159.Joseph Wang, M. P. C., Microfabricated Electrophoresis Chip for Bioassay of Renal Markers. Anal. Chem. 2003, 75, 525–529. 160.Wang, J.; Chen, G.; Pumera, M., Microchip Separation and Electrochemical Detection of Amino Acids and Peptides Following Precolumn Derivatization with Naphthalene‐2,3‐dicarboxyaldehyde. Electroanalysis 2003, 15 (10), 862-865. 161.Chen, G.; Wang, J., Fast and simple sample introduction for capillary electrophoresis microsystems. Analyst 2004, 129 (6), 507-511. 162.do Lago, C. L.; da Silva, H. D. T.; Neves, C. A.; Brito-Neto, J. G. A., A Dry Process for Production of Microfluidic Devices Based on the Lamination of Laser-Printed Polyester Films. Anal. Chem. 2003, 75, 3853-3858. 163.Coltro, W. K. T.; Piccin, E.; Fracassi da Silva, J. A.; Lucio do Lago, C.; Carrilho, E., A toner-mediated lithographic technology for rapid prototyping of glass microchannels. Lab Chip 2007, 7 (7), 931-934. 164.Abdelgawad, M.; Watson, M. W. L.; Young, E. W. K.; Mudrik, J. M.; Ungrin, M. D.; Wheeler, A. R., Soft lithography: masters on demand. Lab Chip 2008, 8 (8), 1379-1385. 165.Gabriel, E. F. M.; do Lago, C. L.; Gobbi, Â. L.; Carrilho, E.; Coltro, W. K. T., Characterization of microchip electrophoresis devices fabricated by direct‐printing process with colored toner. Electrophoresis 2013, 34 (15), 2169-2176. 166.Vullev, V. I.; Wan, J.; Heinrich, V.; Landsman, P.; Bower, P. E.; Xia, B.; Millare, B.; Jones, G., Nonlithographic Fabrication of Microfluidic Devices. J. Am. Chem. Soc. 2006, 128 (50), 16062–16072. 167.Jesus, D. P. d.; Blanes, L.; do Lago, C. L., Microchip free‐flow electrophoresis on glass substrate using laser‐printing toner as structural material. Electrophoresis 2006, 27 (24), 4935-4942. 168.Lu, Y.; Hu, Y.-L.; Xia, X.-H., Effect of surface microstructures on the separation efficiency of neurotransmitters on a direct-printed capillary electrophoresis microchip. Talanta 2009, 79 (5), 1270-1275. 169.Yu, H.; He, F.-Y.; Lu, Y.; Hu, Y.-L.; Zhong, H.-Y.; Xia, X.-H., Improved separation efficiency of neurotransmitters on a native printed capillary electrophoresis microchip simply by manipulating electroosmotic flow. Talanta 2008, 75 (1), 43-48. 170.Stephan, K.; Pittet, P.; Renaud, L.; Kleimann, P.; Morin, P.; Ouaini, N.; Ferrigno, R., Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J. Micromech. Microeng. 2007, 17 (10), N69. 171.Wang, W.; Fu, F. F. u.; Xu, X.-Q.; Lin, J. M.; Chen, G.-N., Filmy channel microchip with amperometric detection. Electrophoresis 2009, 30 (22), 3932-3938. 172.Grimes, A.; Breslauer, D. N.; Long, M.; Pegan, J.; Lee, L. P.; Khine, M., Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 2008, 8 (1), 170-172. 173.Song, S.-H.; Lee, C.-K.; Kim, T.-J.; Shin, I.-C.; Jun, S.-C.; Jung, H.-I., A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluid. Nanofluid. 2010, 9 (2), 533-540. 174.McDonald, J. C.; Chabinyc, M. L.; Metallo, S. J.; Anderson, J. R.; Stroock, A. D.; Whitesides, G. M., Prototyping of Microfluidic Devices in Poly(dimethylsiloxane) Using Solid-Object Printing. Anal. Chem. 2002, 74, 1537-1545. 175.Hon, K. K. B.; Li, L.; Hutchings, I. M., Direct writing technology—Advances and developments. CIRP Ann. 2008, 57 (2), 601-620. 176.Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C., 3D printed microfluidic devices: enablers and barriers. Lab Chip 2016, 16 (11), 1993-2013. 177.Roberts , M. A.; Rossier , J. S.; Bercier , P.; Girault, H., UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. Anal. Chem. 1997, 69, 2035-2042. 178.Spehar, A. M.; Koster, S.; Linder, V.; Kulmala, S.; de Rooij, N. F.; Verpoorte, E.; Sigrist, H.; Thormann, W., Electrokinetic characterization of poly(dimethylsiloxane) microchannels. Electrophoresis 2003, 24 (21), 3674-3678. 179.Chen, C.-H.; Lin, M.-S., Amperometric determination of electroosmotic flow in microchip electrophoresis with a self-generated marker. Electrochimica Acta 2015, 174, 601-607. 180.K., A. A., Prussian Blue and Its Analogues: Electrochemistry and Analytical Application. Electroanalysis 2001, 13, 813-819. 181.Xiao, Y.; Ju, H. X.; Chen, H. Y., A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Anal. Chim. Acta 1999, 391 (3), 299-306. 182.陳信良, 微型整合分析系統結合電化學偵測左旋多巴、多巴胺及多巴克. 民國97年6月. 183.陳繼浩, 以新穎性電化學安培法發展不具電化學活性分子之量測技術以及微晶片電泳電化學偵測平台的開發. 101年6月. 184.Chen, Z.-F.; Gao, Y.-H.; Wang, L.; Chu, X.-G., Construction and evaluation of a novel end-column amperometric detection system for electrophoresis microchips. Sci. China: Chem. 2010, 53 (1), 250-256. 185.Johnson, A. S.; Selimovic, A.; Martin, R. S., Integration of microchip electrophoresis with electrochemical detection using an epoxy-based molding method to embed multiple electrode materials. Electrophoresis 2011, 32 (22), 3121-3128. 186.He, F.-Y.; Liu, A.-L.; Yuan, J.-H.; Coltro, W. K. T.; Carrilho, E.; Xia, X.-H., Electrokinetic control of fluid in plastified laser-printed poly(ethylene terephthalate)-toner microchips. Anal. Bioanal. Chem. 2005, 382 (1), 192-197. 187.Chen, S.-M.; Yang, W.-H.; Chen, X., Highly Sensitive and Selective Determination of Dopamine Based on Graphite Nanosheet-Nafion Composite Film Modified Electrode. Electrochim. Acta 2010, 22 (9), 908-911. 188.Kumar, M. K.; Prataap, R. K. V.; Mohan, S.; Jha, S. K., Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine. Microchim. Acta 2016, 183 (5), 1759-1768. 189.Rocha, L. S.; Pinheiro, J. P.; Carapuça, H. M., Ion-Exchange Voltammetry with Nafion/Poly(sodium 4-styrenesulfonate) Mixed Coatings on Mercury Film Electrodes: Characterization Studies and Application to the Determination of Trace Metals. Langmuir 2006, 22 (19), 8241-8247. 190.Matysik, F. M.; Matysik, S.; Brett, A. M. O.; Brett, C. M. A., Ultrasound-Enhanced Anodic Stripping Voltammetry Using Perfluorosulfonated Ionomer-Coated Mercury Thin-Film Electrodes. Anal. Chem. 1997, 69 (8), 1651-1656. 191.Wang, J.; Chen, S.-P.; Lin, M.-S., Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films. J. Electroanal. Chem. Interfacial Electrochem. 1989, 273 (1), 231-242. 192.Saha, S.; Sarkar, P.; Turner, A. P. F., Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles. Electroanalysis 2014, 26 (10), 2197-2206. 193.Njagi, J.; Erlichman, J. S.; Aston, J. W.; Leiter, J. C.; Andreescu, S., A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sens. Actuators, B 2010, 143 (2), 673-680. 194.Sasso, S. V.; Pierce, R. J.; Walla, R.; Yacynych, A. M., Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal. Chem. 1990, 62 (11), 1111-1117. 195.Njagi, J. I.; Kagwanja, S. M., The Interface in Biosensing: Improving Selectivity and Sensitivity. In Interfaces and Interphases in Analytical Chemistry, American Chemical Society: 2011; Vol. 1062, pp 225-247. 196.Wang, J.-S.; Chen, P.-Y.; Huang, T.-T.; Lin, M.-S., Enzymeless Flow Injection Analysis of 2,4,6-Trichlorophenol Based on Preoxidation by Ammonium Cerium (IV) Nitrate. Int. J. Electrochem. Sci. 2012, 7, 9113-9121. 197.Cui, G.; Kim, S.-J.; Choi, S.-H.; Nam, H.; Cha, G.-S.; Paeng, K.-J., A Disposable Amperometric Sensor Screen Printed on a Nitrocellulose Strip: A Glucose Biosensor Employing Lead Oxide as an Interference-Removing Agent. Anal. Chem. 2000, 72 (8), 1925-1929. 198.Shin, J.-H.; Choi, Y.-S.; Lee, H.-J.; Choi, S.-H.; Ha, J.-H.; Yoon, I.-J.; Nam, H.-Y.; Cha, G.-S., A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences. Anal. Chem. 2001, 73 (24), 5965-5971. 199.Lin, M.-S.; Jan, B.-I.; Chen, P.-Y.; Cheng, W.-C.; Chen, C.-H., New Determination Scheme of p-Aminophenol by MnO2 Modified Electrode Coupled with Flow Injection Analysis. Electroanalysis 2010, 22 (12), 1278-1281. 200.Choi, S.-H.; Lee, S.-D.; Shin, J. H.; Ha, J.-H.; Nam, H.-Y.; Cha, G.-S., Amperometric biosensors employing an insoluble oxidant as an interference-removing agent. Anal. Chim. Acta 2002, 461 (2), 251-260. 201.Leu, H.-J.; Lin, M.-S., A LiMn2O4 Based Electrochemical Scheme for Selective Measurement of Dopamine. Electroanalysis 2006, 18 (3), 307-310. 202.Jia, W.-Z.; Wang, K.; Xia, X.-H., Elimination of electrochemical interferences in glucose biosensors. TrAC, Trends Anal. Chem. 2010, 29 (4), 306-318. 203.Chen, C.-H.; Chen, Y.-C.; Lin, M.-S., Amperometric determination of NADH with Co3O4 nanosheet modifiedelectrode. Biosens Bioelectron. 2013, 42, 379-384. 204.Lancaster, E. M.; Hiatt, J. R.; Zarrinpar, A., Acetaminophen hepatotoxicity: an updated review. Arch. Toxicol. 2015, 89 (2), 193-199. 205.Blakely, P.; McDonald, B. R., Acute renal failure due to acetaminophen ingestion: a case report and review of the literature. J. Am. Soc. Nephrol. 1995, 6 (1), 48-53. 206.Hodgman, M. J.; Garrard, A. R., A Review of Acetaminophen Poisoning. Crit. Care Clin. 2012, 28 (4), 499-516. 207.Manassra, A.; Khamis, M.; el-Dakiky, M.; Abdel-Qader, Z.; Al-Rimawi, F., Simultaneous HPLC analysis of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid dosage forms. J. Pharm. Biomed. Anal. 2010, 51 (4), 991-993. 208.Ayora Cañada, M. J.; Pascual Reguera, M. I.; Ruiz Medina, A.; Fernández de Córdova, M. L.; Molina Dı́az, A., Fast determination of paracetamol by using a very simple photometric flow-through sensing device. J. Pharm. Biomed. Anal. 2000, 22 (1), 59-66. 209.Knochen, M.; Giglio, J.; Reis, B. F., Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions. J. Pharm. Biomed. Anal. 2003, 33 (2), 191-197. 210.Tomečková, V.; Gajová, A.; Veliká, B.; Saxunová, L.; Hertelyová, Z., Prooxidative and fluorescence properties of paracetamol during interactions with mitochondria. Spectroscopy 2011, 25 (1), 45-51. 211.Gicquel, T.; Aubert, J.; Lepage, S.; Fromenty, B.; Morel, I., Quantitative Analysis of Acetaminophen and its Primary Metabolites in Small Plasma Volumes by Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2013, 37 (2), 110-116. 212.Ramos, M. L.; Tyson, J. F.; Curran, D. J., Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry. Anal. Chim. Acta 1998, 364 (1–3), 107-116. 213.Babaei, A.; Yousefi, A.; Afrasiabi, M.; Shabanian, M., A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular sieve/nickel hydroxide nanoparticles/multiwalled carbon nanotubes. J. Electroanal. Chem. 2015, 740, 28-36. 214.Lee, S.-H.; Lee, J.-H.; Tran, V.-K.; Ko, E.; Park, C.-H.; Chung, W.-S.; Seong, G.-H., Determination of acetaminophen using functional paper-based electrochemical devices. Sens. Actuators, B 2016, 232, 514-522. 215.Chen, X.-L.; Zhang, G.-W.; Shi, L.; Pan, S.-Q.; Liu, W.; Pan, H.-B., Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater. Sci. Eng., C 2016, 65, 80-89. 216.Afrasiabi, M.; Kianipour, S.; Babaei, A.; Nasimi, A. A.; Shabanian, M., A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. J. Saudi Chem. Soc. 2016, 20, Supplement 1, S480-S487. 217.Song, C.-J.; Zhang, J.-J., Electrocatalytic Oxygen Reduction Reaction. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Zhang, J., Ed. Springer London: London, 2008; 89-134. 218.Ishibashi, K.-I.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol., A 2000, 134 (1–2), 139-142. 219.蘇晟文, 微晶片電泳結合電化學偵測乙醯胺酚及其水解物對苯胺酚之研究. 96年6月. 220.Allen J. Bard; Faulkner, L. R., Electrochemical methods Fundamentals and applications 2nd, P453-455. 221.Passani, M. B.; Blandina, P., Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci. 2011, 32 (4), 242-249. 222.Benetti, F.; Izquierdo, I., Histamine infused into basolateral amygdala enhances memory consolidation of inhibitory avoidance. Int. J. Neuropsychopharmacol. 2013, 16 (7), 1539-1545. 223.O’Mahony, L.; Akdis, M.; Akdis, C. A., Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011, 128 (6), 1153-1162. 224.Maintz, L.; Novak, N., Histamine and histamine intolerance. Am. J. Clin. Nutr. 2007, 85, 1185-1196. 225. FDA. Compliance Policy Guide, . 1996, 7108 525-540. 226.Oguri, S.; Okuya, Y.; Yanase, Y.; Suzuki, S., Post-column derivatization capillary electrochromatography for detection of biogenic amines in tuna-meat. J. Chromatogr. A 2008, 1202 (1), 96-101. 227.Kawanishi, H.; Toyo’oka, T.; Ito, K.; Maeda, M.; Hamada, T.; Fukushima, T.; Kato, M.; Inagaki, S., Rapid determination of histamine and its metabolites in mice hair by ultra-performance liquid chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2006, 1132 (1–2), 148-156. 228.Fiechter, G.; Sivec, G.; Mayer, H. K., Application of UHPLC for the simultaneous analysis of free amino acids and biogenic amines in ripened acid-curd cheeses. J. Chromatogr. B 2013, 927, 191-200. 229.Tong, A.-J.; Dong, H.; Li, L.-D., Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer. Anal. Chim. Acta 2002, 466 (1), 31-37. 230.Sagratini, G.; Fernández-Franzón, M.; De Berardinis, F.; Font, G.; Vittori, S.; Mañes, J., Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography–tandem mass spectrometry. Food Chem. 2012, 132 (1), 537-543. 231.Kirby, A. E.; Jebrail, M. J.; Yang, H.; Wheeler, A. R., Folded emitters for nanoelectrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24 (23), 3425-3431. 232.Carralero, V.; González‐Cortés, A.; Yáñez‐Sedeño, P.; Pingarrón, J. M., Pulsed Amperometric Detection of Histamine at Glassy Carbon Electrodes Modified with Gold Nanoparticles. Electroanalysis 2005, 17 (4), 289-297. 233.Švarc‐Gajić, J.; Stojanović, Z., Electrocatalytic Determination of Histamine on a Nickel‐Film Glassy Carbon Electrode. Electroanalysis 2010, 22 (24), 2931-2939. 234.Chemnitius, G. C.; Bilitewski, U., Development of screen-printed enzyme electrodes for the estimation of fish quality. Sens. Actuators, B 1996, 32 (2), 107-113. 235.Telsnig, D.; Terzic, A.; Krenn, T.; Kassarnig, V.; Kalcher, K.; Ortner, A., Development of a Voltammetric Amine Oxidase-Modified Biosensor for the Determination of Biogenic Amines in Food. Int. J. Electrochem. Sci. 2012, 7, 6893-6903. 236.Gumpu, M. B.; Nesakumar, N.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B., Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sens. Actuators, B 2014, 199, 330-338. 237.de Jesus, D. S.; Couto, C. M. C. M.; Araújo, A. N.; Montenegro, M. C. B. S. M., Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol–gel film for benzydamine determination in pharmaceuticals. J. Pharm. Biomed. Anal. 2003, 33 (5), 983-990. 238.Male, K. B.; Bouvrette, P.; Luong, J. H. T.; Gibbs, B. F., Amperometric Biosensor for Total Histamine, Putrescine and Cadaverine using Diamine Oxidase. J. Food Sci. 1996, 61, 1012-1016. 239.Veseli, A.; Vasjari, M.; Arbneshi, T.; Hajrizi, A.; Švorc, Ľ.; Samphao, A.; Kalcher, K., Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide. Sens. Actuators, B 2016, 228, 774-781. 240.Lin, M.-S.; Chen, C.-H.; Chen, Z., Development of structure-specific electrochemical sensor and its application for polyamines determination. Electrochim. Acta 2011, 56 (3), 1069-1075. 241.Chen, C.-H.; Lin, M.-S., A novel structural specific creatinine sensing scheme for the determination of the urine creatinine. Biosens Bioelectron. 2012, 31 (1), 90-94. 242.Chen, C.-H.; Wang, J.-S.; Lin, Y.-T.; Lin, M.-S., New strategy for amperometric determination of nabam pesticide by using potential assisted surface oxide regeneration method. Sens. Actuators, B 2012, 173, 197-202. 243.Chen, C.-H.; Lin, Y.-T.; Lin, M.-S., Low-potential amperometric determination of purine derivatives through surface oxide regeneration method. Anal. Chim. Acta 2013, 796, 42-47. 244.Zhang, L.-Y.; Huang, W.-H.; Wang, Z.-L.; Cheng, J.-K., Determination of Histamine by Capillary Zone Electrophoresis With Amperometric Detection. Anal. Sci. 2002, 18, 1117-1120. 245.Strehblow, H. H.; Titze, B., The investigation of the passive behaviour of copper in weakly acid and alkaline solutions and the examination of the passive film by esca and ISS. Electrochim. Acta 1980, 25 (6), 839-850. 246.Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N., Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243-8253. 247.Saghatforoush, L.; Hasanzadeh, M.; Shadjou, N., Polystyrene–graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine. Chin. Chem. Lett. 2014, 25 (4), 655-658. 248.Telsnig, D.; Kalcher, K.; Leitner, A.; Ortner, A., Design of an Amperometric Biosensor for the Determination of Biogenic Amines Using Screen Printed Carbon Working Electrodes. Electroanalysis 2013, 25 (1), 47-50. 249.An, D.; Chen, Z.-Q.; Zheng, J.-H.; Chen, S.-Y.; Wang, L.; Huang, Z.-Y.; Weng, L., Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem. 2015, 168, 1-6. 250.Keow, C. M.; Baker, F. A.; Salleh, A. B.; H., L. Y.-.; Wangiran, R.; Siddiquee, S., Screen-printed Histamine Biosensors Fabricated from the Entrapment of Diamine Oxidase in a Photocured Poly(HEMA) Film Int. J. Electrochem. Sci. 2012, 7, 4702-4715. 251.Keow, C. M.; Abu Bakar, F.; Salleh, A. B.; Heng, L. Y.; Wagiran, R.; Bean, L. S., Keow, C.M., Abu Bakar, F., Salleh, A.B., Heng, L.Y., Wagiran, R., Bean, L.S. Food Chem. 2007, 105 (4), 1636-1641. 252.Linares, D. M.; Martín, M.; Ladero, V.; Alvarez, M. A.; Fernández, M., Biogenic Amines in Dairy Products. Crit. Rev. Food. Sci. Nutr. 2011, 51 (7), 691-703. 253.M., H. R., My favourite molecule: Polyamines, chromatin structure and transcription. BioEssays 1993, 15 (8), 561-566. 254.Ha, H. C.; Sirisoma, N. S.; Kuppusamy, P.; Zweier, J. L.; Woster, P. M.; Casero, R. A., The natural polyamine spermine functions directly as a free radical scavenger. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (19), 11140-11145. 255.Pegg, A. E., Toxicity of Polyamines and Their Metabolic Products. Chem. Res. Toxicol. 2013, 26 (12), 1782-1800. 256.Kvasnicka, F.; Voldrich, M., Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. J. Chromatogr. A 2006, 1103. 257.Niculescu, M.; Nistor, C.; Frébort, I.; Peč, P.; Mattiasson, B.; Csöregi, E., Redox Hydrogel-Based Amperometric Bienzyme Electrodes for Fish Freshness Monitoring. Anal. Chem. 2000, 72 (7), 1591-1597. 258.Mureşan, L.; Ronda Valera, R.; Frébort, I.; Popescu, L. C.; Csöregi, E.; Nistor, M., Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchim. Acta 2008, 163 (3), 219-225. 259.White, P. C.; Lawrence, N. S.; Davis, J.; Compton, R. G., Electrochemically initiated 1,4 additions: a versatile route to the determination of thiols. Anal. Chim. Acta 2001, 447 (1), 1-10. 260.Lawrence, N. S.; Davis, J.; Compton, R. G., Electrochemical detection of thiols in biological media. Talanta 2001, 53 (5), 1089-1094. 261.Hugo Seymour, E.; Lawrence, N. S.; Beckett, E. L.; Davis, J.; Compton, R. G., Electrochemical detection of aniline: an electrochemically initiated reaction pathway. Talanta 2002, 57 (2), 233-242. 262.Jovancicevic, V.; Zelenay, P.; Scharifker, B. R., The transport properties of oxygen in aqueous borate solutions. Electrochim. Acta 1987, 32 (11), 1553-1555. 263.Henao‐Escobar, W.; Domínguez‐Renedo, O.; Alonso‐Lomillo, M. A.; Cascalheira, J. F.; Dias‐Cabral, A. C.; Arcos‐Martínez, M. J., Characterization of a Disposable Electrochemical Biosensor Based on Putrescine Oxidase from Micrococcus rubens for the Determination of Putrescine. Electroanalysis 2015, 27 (2), 368-377. 264.Leonardo, S.; Campàs, M., Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchimica Acta 2016, 183 (6), 1881-1890. 265.Önal, A., A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007, 103 (4), 1475-1486.
|