跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柳美禎
研究生(外文):Mei-Chen Liu
論文名稱:製作 In 2O3:ZnO (IZO)(IZO) (IZO) 透明導電 薄膜晶體與透明導電 薄膜晶體與性
論文名稱(外文):Fabrication and Electrical Characterization of In2O3:ZnO (IZO) Thin-Film Transistors
指導教授:阮弼群
指導教授(外文):Pi-Chun Juan
口試委員:劉傳璽林成利王志良
口試委員(外文):Chuan-Hsi LiuCheng-Li LinJyh-Liang Wang
口試日期:2015-07-28
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:110
中文關鍵詞:氧化銦鋅 (IZO)透明導電薄膜薄膜電晶體
外文關鍵詞:Indium-doped zinc oxideTransparent conductive oxide (TCO)Thin film transistor (TFTs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電漿輔助氣相化學設備濺鍍設備沉積閘極層(Mo)、介電層(ZrO2) 及通道層In2O3 : ZnO (IZO) 薄膜,再以黃光製程(Photolithography) 曝光顯影電晶體的光罩圖案與蒸鍍上電極(Ag),最後以掀離製程(Lift-Off) 完成透明導電薄膜電晶體。以不同薄膜濺鍍參數對於IZO 薄膜的結晶性、結構、成分、光電特性和粗糙度等的改變,進而探討對於薄膜電晶體電性之影響。另藉由改變薄膜電晶體的通道大小來觀察其特性的變化。
實驗結果顯示,IZO薄膜經過不同的退火溫度(150°C、250°C350°C) 及不同的氬氣流量(50、100、150和200 SCCM) 時,XRD繞射分析均為非晶結構,且穿透率高達80 % 左右及較低表面粗糙度1~2 nm(Rms)。當退火溫度為350°C和氬氣流量為50 SCCM時,電阻率最低可達5.47×10-3Ω•cm;黃光製程部分,若光罩尺寸越小光阻越薄則顯影時間越短。最佳的曝光時間約8~10秒、軟烤溫度100°C。最後利用高介電常數材料ZrO2當作介電層製作薄膜電晶體,相較於傳統介電層SiO2需要施加較大的閘極電壓才能達到相當電晶體電流,ZrO2 則具有較小的施加偏壓就有放大電流特性的優勢。另外,也藉由電容的製作與分析,IV/CV量測得到電晶體介電層厚度與漏電之間的關係,探討製程成敗的相關特性。
The IZO films are processed at different annealing temperatures (350°C, 400°C, 500°C, and 600°C) under different argon gas flow (50, 100, 150, 200 SCCM).The physical characteristics of IZO films including crystal structures, photoelectric properties and morphology were obtained by using X-Ray diffraction (XRD), uv-visible spectroscopy, Hall effect measurement and atomic force microscopy (AFM).The XRD shows that the amorphous phase, the transmittance higher than 80 % and the surface roughness about 1~2 nm (Rms) are abtained. The best resistivity (annealed at 350°Cand argon gas flow is 50 SCCM) of IZO film is 5.47×10-3Ω•cm. From the photo-lithography, results show the thicker photoresist thickness needs to have longer development times. The optimum condition is 8~10 second to exposure and 100°C for soft baking.
The thin film transistors (TFTs) have been fabricated in this work by using sputtering molybdenum (Mo) as the gate layer, IZO as the channel layer and high-k zirconium dioxide (ZrO2) as the gate insulator. Different sizes of W/L for TFTs have been designed and processed by photo-lithography. Source and drain electrodes are formed by Lift-Off method after thermal evaporation of the silver (Ag). Finally, using ZrO2 as a gate insulator of TFTs with high dielectric constant, a lower operation voltage compares to traditionally SiO2 gate dielectric for the Id current. In addition, the relationship between gate insulator thickness and leakage current of both I-V and C-V curves are measured by Al/ZrO2/IZO (MIS) structures.

明志科技大學碩士學位論文指導教授推薦書………………………………. i
明志科技大學碩士學位論文口試委員審定書……………………………… ii
誌謝……………………………………………………………………………iii
中文摘要………………………………………………………………………iv
Abstract………………………………………………………………………. v
目錄……………………………………………………………………………vi
表目錄………………………………………..……………………………….vii
圖目錄.. ……………………………………………………………………...viii
第一章 序 論 1
1.1 透明導電薄膜簡介 1
1.2 薄膜電晶體簡介 1
1.2.1 非晶矽薄膜電晶體 2
1.2.2 低溫多晶矽薄膜電晶體 2
1.2.3 氧化物薄膜電晶體 3
1.2 研究動機 4
第二章 文獻回顧 6
2.1金屬氧化物半導體薄膜 6
2.2 氧化銦鋅透明導電薄膜 7
2.2.1 氧化銦鋅晶體結構 8
2.2.2 氧化銦鋅薄膜光學特性 8
2.2.3 氧化銦鋅薄膜導電性 12
2.3 氧化銦鋅薄膜電晶體 14
2.3.1 氧化銦鋅薄膜電晶體元件結構 15
2.3.2 氧化銦鋅薄膜電晶體電性分析 17
2.3.3 氧化銦鋅薄膜電晶體之應用 19
第三章 氧化銦鋅透明導電薄膜電晶體之製備 21
3.1 薄膜電晶體製程簡介 21
3.2 濺鍍製程 21
3.2.1 試片前處理 24
3.2.2 閘極層的製作 25
3.2.3 介電層的製作 25
3.2.4 通道層的製作 25
3.3 快速熱退火處理 26
3.4 黃光製程 28
3.4.1 光阻的選用 29
3.4.2 黃光製程流程 31
3.5 蒸鍍製程 34
3.6 Lift off 製程 35
3.7 特性分析 36
3.7.1 表面輪廓儀 37
3.7.2 四點探針 38
3.7.3 霍爾量測 39
3.7.4 紫外光可見光分光光譜儀 40
3.7.5 X光繞射儀 42
3.7.6 原子力顯微鏡 44
3.7.7 電壓/電流半導體量測儀 48
3.7.8 電容分析理論 49
第四章 氧化銦鋅透明導電薄膜特性分析 52
4.1霍爾電性分析 52
4.1.1 氧化銦鋅薄膜電阻率 52
4.1.2 氧化銦鋅薄膜薄膜載子濃度 55
4.1.3 氧化銦鋅薄膜薄膜載子遷移率 57
4.2 UV-vis 光學分析 60
4.2.1 氧化銦鋅薄膜 UV-vis穿透圖譜 60
4.2.2 氧化銦鋅薄膜能隙量測 63
4.3 X光繞射分析 65
4.3.1 氧化銦鋅薄膜 XRD繞射圖譜 65
4.4 原子力顯微鏡分析 68
4.5 黃光製程結果與分析 73
第五章 氧化銦鋅透明導電薄膜電晶體元件特性分析 77
5.1 IV及CV特性分析 77
5.1.1 氧化銦鋅薄膜電晶體特性分析 77
5.1.2 氧化銦鋅薄膜電晶體漏電流之探討 78
5.2 以MIS結構的電容對漏電流之探討 82
第六章 結論 86
第七章 未來規劃 87
參考文獻 88

[1] 郭倩丞、李正中,“透明導電薄膜特性及光電元件應用”,中國工程師學會會刊,2011年,84(6),18-27
[2] C. Guillén and J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics, Thin Solid Films,” 2011,520, 1–17
[3] J. Wager, “OSU Engineers Create World's First Transparent Transistor,”College of Engineering, Oregon State University, Corvallis, OR: OSU News & Commun., 2003,29, 1-12
[4] Y. Liu, W. J. Wu, Z. F.Lei, L.Wang, Q. Shi, Y. R. Liu, Y. F.En and B. Li, “Instability of Indium Zinc Oxide Thin-Film Transistors Under Transmission Line Pulsed Stress,” IEEE
Electron Device Lett., 2014,35(12), 1254-1256
[5] R. Xu, J.He, Y. Song, W. Li, A. Zaslavsky, and D. C. Paine,“Contact resistance improvement using interfacial silver nanoparticles in amorphous indium-zinc-oxide thin film
transistors,” Appl. Phys. Lett., 2014, 105, 093504-1~093504-5
[6] S. Tomai, K. Terai, T. Junke, Y. Tsuruma, K. Ebata, K. Yano, and Y. Uraoka, “The electrical conduction properties of poly-crystalline indium-zinc-oxide film,” Jpn. J. Appl.
Phys., 2014, 115, 083701-1~083701-9
[7] 李敏鴻、陳冠任、沈正都、羅廣禮,“高性能之低溫多晶矽薄膜電晶體及其應用”,奈米通訊,2011年,18(1),24-29
[8] 葉永輝、鄭君丞,“淺談透明氧化物薄膜電晶體技術及應用”,材料世界網工業材料雜誌,2010年,279,118-123
[9] 程金保、楊啟榮、林雅慧、李宗恆、倪茂倫, “結合 Lift-Off 及薄膜沉積技術製作固態電致色變影像顯示元件” ,技術學刊,2009年,24(3),91,175-182
[10] E. G. Fu, D. M. Zhuang, G.Zhang, W. F.Yang, M.Zhao, “Substrate temperature dependence of the properties of ZAO thin films deposited by magnetron sputtering,” Appl. Surf.
Sci., 2003, 217, 88-94.
[11] H. W. Lehmann and R. Widmer, “Properties and Properties of Reactively Co-sputtered Transparent Conducting Films,”Thin Solid Films, 1975, 27,359-368
[12] E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopra, “Electrical and Optical Properties of Tin Oxide Films Doped with F and(Sb+F),”J. Appl. Phys., 1982, 53, 1615-1621
[13] C.Y.Park, B.H.Choi and J.H.Lee, “Electrical and Optical Properties of Index-Matched Transparent Conducting Oxide Layers for Liquid Crystal on Si Projection Displays,” Jpn.
J. Appl. Phys.,2013, 52,06GG03-1~06GG03-4
[14] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol., 2005,20,35-44
[15] 李玉華,“透明導電膜及其應用”,科儀新知,1990年,12(1),94-102
[16] P. Thilakan and J. Kumar, “Studies on the preferred orientation changes and its influenced properties on ITO thin films,” Vacuum, 1997,48( 5), 463-466
[17] W. Runlai, Y. Ming, Z. Qianfei, and Z. Qun, “Transparent conductive indium zinc oxide films prepared by PPD,” J. Vac. Sci. Technol., A, 2012, 30, 061508-1~061508-7
[18] G. Socola, M. Socolb, N. Stefana, E. Axentea, G. Popescu-Pelina, D. Craciuna, L. Dutaa, C.N. Mihailescua, I.N. Mihailescua, A. Stanculescub, D. Visand, V. Savad, A.C.
Galcab, C.R. Luculescua, V. Craciuna, “Pulsed laser 92 deposition of transparent conductive oxide thin films on flexible substrates,” Appl. Surf. Sci., 2012, 260, 42–46
[19] W. S. Choi, H. Jo, M. S. Kwon, B.J.Jung, “Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping,”Curr. Appl. Phys.,
2014, 14, 1831-1836
[20] W. Kim, J. W.Bang, H. S. Uhm, S. H.Lee, J. S.Park, “Effects of post plasma treatment on material properties and device characteristics in indium zinc oxide thin film
transistors,” Thin Solid Films, 2010, 519, 1573–1577
[21] B. Yaglioglu, Y. J.Huang, H. Y. Yeom, D.C. Paine, “A study of amorphous and crystalline phases in In2O3–10 wt.% ZnO thin films deposited by DC magnetron sputtering,” Thin
Solid Films, 2006, 496, 89 –94.
[22] P.C. David, Y. Burag, B. Zach, L. Sunghwan, “Amorphous IZO-based transparent thin film transistors,” Thin Solid Films, 2008, 516, 5894–5898
[23] S.Lee and D.C. Paine, “Metallization selection and the performance of amorphous In-Zn-O thin film transistors,” Appl. Phys. Lett., 2014, 104, 252103-1~252103-6
[24] M.Li, L. Lan, , M. Xu, H. Xu, D. Luo, P. Xiao, J. Peng, “Performance improvement of oxide thin-film transistors with a two-step-annealing method,”Solid-State Electron.,
2014, 91, 9–12
[25] W. K. Lin, K. C. Liu, J. N.Chen, S. C. Hu, S. T.Chang, “The influence of fabrication process on top-gate thin-film transistors,” Thin Solid Films, 2011, 519, 5126–5130
[26] W. H. Jeong,K.M.Kim ,D.L.Kim,Y.S.Rim,H.J.Kim, “The Effects of Dual-Active-Layer Modulation on a Low-Temperature Solution-Processed ‘Oxide Thin-Film Transistor,” IEEE Trans.
Electron Devices, 2012, 59(8), 93 2149-2152
[27] J. Kwon, Y. K. Hong, H. J. Kwon, Y. J. Park, B. Yoo, J. Kim,S. Kim, “Optically transparent thin-film transistors based on 2D multilayer MoS2 and indium zinc oxide
electrodes,” Nano., 2015, 26, 035202-1~035202-5
[28] D. Luo, L. Lan, M. Xu, H. Xu, M.Li, L. Wang and J. Peng, “Role of Rare Earth Ions in Anodic Gate Dielectrics for Indium-Zinc-Oxide Thin-Film Transistors,” J. Electrochem.
Soc., 2012, 159(5), H502-H506
[29] K. B.Park, J. B. Seon, G.H.Kim, M.Yang, B. Koo,H.J.Kim, M. K. Ryu, and S. Y.Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE
Electron Device Lett., 2010, 31(4), 311-313
[30] J. S. Seo, J. H. Jeon, Y. H. Hwang and B. S. Bae, “Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic,” Sci. Rep.2013,
13, 1-9
[31] J. H. Choi, S. H. Kang, H. S. Oh, T. H. Yu, I.S. Sohn, “Design and characterization of Ga-doped indium tin oxide films for pixel electrode In liquid crystal display,” Thin
Solid Films, 2013, 527, 141–146
[32] P. T. Liu, Y. T.Chou and L. F. Teng, “Charge pumping method for photosensor application by using amorphous Indium-zinc oxide thin film transistors,” Appl. Phys. Lett., 2009,
94, 242101-1~242101-3
[33] J. Jung, S. J. Kim, K. W. Lee, D. H. Yoon, Y. G. Kim, H. Y. Kwak, S. R. Dugasani, S. H. Park, H. J. Kim., “Approaches to label-free flexible DNA biosensors using low-
temperature solution-processed InZnO thin-film transistors,” Biosens. Bioelectron., 2014, 55, 99–105
[34] 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2001年,402-40394
[35] H. Xu, L. Lan, M. Xu, J. Zou, L. Wang, D. Wang, and J. Peng, “High performance indium-zinc-oxide thin-film transistors fabricated with a back channel-etch-technique,” Appl.
Phys. Lett., 2011, 99, 253501-1~253501-5
[36] S. Lee, H. Park and D. C. Paine, “A study of the specific contact resistance and channel resistivity of amorphous IZO thin film transistors with IZO source–drain
metallization,” Jpn. J. Appl. Phys., 2011, 109, 063702-1 ~063702-7
[37] 洪木清、陳智崇,“高溫快速熱退火技術AM-OLED TFT Array之應用”,工業材料雜誌,2008年,254,124-128
[38] N. Itoa, Y. Satoa, P. K. Songa, A. Kaijiod, K. Inoued, Y. Shigesatoa, “Electrical and optical properties of amorphous indium zinc oxide films,” Thin Solid Films, 2006,496,
99–103
[39] L. Lan, M. Xu, J. Peng, H. Xu, M. Li, D. Luo, J. Zou, H. Tao, L. Wang, and R. Yao, “Influence of source and drain contacts on the properties of the indium-zinc oxide thin
film transistors based on anodic aluminum oxide gate dielectrics,” Jpn. J. Appl. Phys., 2011, 110(10), 103703-1~103703-8
[40] 蔡文勇,“I-Line 光阻劑於TFT LCD Array 製程之應用及評估”,化學工程與材料工程研究所碩士論文,2006年4月
[41] 楊金成、吳政三、柯富祥,“TEL MK-8自動化阻劑旋轉塗佈及顯影系統介紹”,毫微米通訊,2012年,8(1),41-49
[42] Negative Lift-Off Resists, ©2010 Futurrex, Inc.
[43] Photo-lithography Resist Processes and Capabilities, positive resist, Cornell NanoScale Science & Technology Facility (CNF)
[44] 莊達人, “VLSI 製造技術” ,高立圖書有限公司出版,2013年,24-3195
[45] C.J. Richard, “Film Deposition Introduction to Microelectronic Fabrication (2nd ed.),”Upper Saddle River: Prentice Hall. ISBN,2002, 0-201-44494-1
[46] K. L. Chopra, “Growth of Thin Metal Films under Applied Electric Field,” Appl. Phys. Lett., 1965, 7( 51), 140-142
[47] D. I. Kennedy, R. E. Hayes and R. W. Alsford, “The Influence of Charge ‘Effects on the Growth and Electrical Resistivity of Thin Metal Films,” J. Appl. Phys., 1967, 38,
1986-1987
[48] P. V. Zant, “Microchip Fabrication,” New York: McGraw-Hill. 2000, 431(2), ISBN 0-07-135636-3.
[49] C. Z. Chang, J.Zhang, X. Feng,J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P.Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. Zhang, K. He, Y.
Wang, L. Lu, X. C. Ma, Q. K. Xue, “Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator,” science., 2013, 1234414(10.1126), 1-7
[50] D. A. Skoog, F. J. Holler, S. R. Crouch, “Principles of Instrumental Analysis (6th ed.),”Belmont, Thomson Brooks/Cole., 2007, ISBN 9780495012016, 169-173
[51] C. Y. Hsu, “Surface morphology and electrical transport of rapid thermal annealed chromium doped indium zinc oxides: The influence of zinc interstitials and out-diffusion,”
Appl. Phys. Lett., 2013, 103, 242103-1~242103-6
[52] 林麗娟,“X 光繞射原理及其應用”,X光材料分析技術與應用專題,工業材料,1994年,86,100-109
[53] M. Quaas, C. Eggs and H. Wulff, “Structural studies of ITO thin Films with the Rietveld method,” Thin Solid Films, 1998, 332, 27796
[54] 黃英碩,“掃描探針顯微術的原理及應用”,科儀新知,1995年,26(4),105-110
[55] S. M. Park, D. H. Lee, Y. S. Lim, D. K. Kim, M. Yi, “Effect of aluminum addition to solution-derived amorphous indium zinc oxide thin film for an oxide thin film
transistors,” Microelectron.Eng.2013, 109, 189–192
[56] D. H. Kang, J. U.Han, S. H. Ha and J. Jang, “Threshold voltage dependence on channel length in amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett.,
2013, 102, 083508-1~083508-5
[57] Y. Song, R. Xu, J. He, S. Siontas, A. Zaslavsky and D.C. Paine, Top-Gated Indium–Zinc–Oxide “Thin-Film Transistors With In Situ Al2O3/HfO2 Gate Oxide,” IEEE Electron Device
Lett., DECEMBER 2014,35(12), 1251-1253
[58] M. Waldrip and R. Tse, “Capacitance Measurement: Measurement Tips for High Capacitance MLCC's,” TDK Components USA, Inc., 2000, 1-7
[59] W. Kim, Capacitance-Voltage measurement, “Semiconductor materials and device characterization,” 2012, 16(11), 5-17

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top