跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/06 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾于真
研究生(外文):Yu-Chen Tseng
論文名稱:網路購物銷售量與庫存量對從眾行為之影響
論文名稱(外文):The Influence of Herd Behavior on Sales Volume and Inventory in Online Shopping
指導教授:陳宜棻陳宜棻引用關係
指導教授(外文):Yi-Fen Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:國際經營與貿易研究所
學門:商業及管理學門
學類:貿易學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:122
中文關鍵詞:從眾行為網路購物框架銷售量庫存量
外文關鍵詞:Herd behaviorOnline shoppingFramingSales volumeInventory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
網際網路已蓬勃發展成為一個龐大的全球市場,可供商品與服務的交易。而當人們在網路跟隨著他人做決定時,會引發網路的從眾行為。本研究旨在探討網路購物銷售量及庫存量對消費者從眾行為的影響。本研究提出三個實驗設計來解釋網路購物的從眾行為:實驗一是使用2(銷售量規模:大/小)× 2(銷售量框架:絕對值/相對值)× 2(品牌熟悉度:熟悉/不熟悉)之實驗設計檢驗網路從眾行為的效果。實驗二是2(庫存量:5單位/無庫存)× 2(品牌熟悉度:熟悉/不熟悉)之實驗設計檢驗網路從眾行為的效果。實驗三則是2(銷售量規模:大/小)× 2(銷售量框架:絕對值/相對值)× 2(時間間隔:長/短)之實驗設計檢驗網路從眾行為的效果。以上實驗合計有 870位參與者,皆為曾有網路購物消費經驗的台灣人。本研究結果顯示,消費者針對於較陌生品牌的產品,其增加之銷售數量若在大規模以絕對值表示;及在小規模以相對值表示,都顯著地正向影響其網路從眾行為。而顯示低庫存量也對消費者的網路從眾行為有顯著的正向影響。最後,短期內增加之銷售數量,不論在大規模以絕對值表示;或在小規模以相對值表示,都顯著地正向影響消費者網路從眾行為。本研究的結果有助於研究人員可以藉由理論的角度,更加了解網路從眾行為所帶來的影響,並對網路購物業者提出幾項建議。

The Internet has developed into a vast global market place for the exchange of goods and services. Online herd behavior occurs when people follow others on the Internet. This study aims to investigate the influence of herd behavior on sales volume and inventory in online shopping. The study involved three experiments that examined herd behavior in online shopping: experiment 1 used a 2 (scale of sales volume framing: large / small) × 2 (sales volume framing: absolute value / relative value) × 2 (brand familiarity: familiar / unfamiliar) design. Online experiment 2 used a 2 (inventory: 5 units / no inventory) × 2 (brand familiarity: familiar / unfamiliar) design. Online experiment 3 used a 2 (scale of sales volume framing: large / small) × 2 (sales volume framing: absolute value / relative value) × 2 (time interval: long / short) design. 870 people from Taiwan with online shopping experience participated in the experiments. The results indicated that when consumers are unfamiliar with a brand, an increase in the sales volume of the target product both at a large scale using absolute values and at a small scale using relative values have significantly positive effects on consumers’ online herd behavior. Moreover, the display of low inventory level has a significant influence on consumer herd behavior in online shopping. At last, an increase in the sales volume of the target product both at a large scale using absolute values and at a small scale using relative values for a short time interval have significantly positive effects on consumers’ online herd behavior. These results of this study could help researchers broaden the understanding of the effects of online herd behavior from a theoretical standpoint and have implications for online stores.

摘要
Abstract
誌謝
Table of contents
List of tables
List of figures
Chapter 1 Introduction
Chapter 2 Literature review and hypotheses
2.1 Online herd behavior
2.2 Scale of sales volume framing
2.3 The framing effect
2.3.1 Sales volume framing
2.4 Brand familiarity
2.5 Inventory
2.6 Time Interval
Chapter 3 Methodology
3.1 Research framework
3.2 Sample
3.3 Experimental design
3.4 Material
3.5 Experimental procedure
3.6 Measurement
3.7 Manipulation checks
Chapter 4 Results
4.1 Experiment 1
4.2 Experiment 2
4.3 Experiment 3
4.4 Summary of hypotheses test
Chapter 5 Conclusions and implications
5.1 Discussion
5.2 Conclusions
5.3 Research implications
5.4 Managerial implications
5.5 Limitations and future research
Reference
Appendix
List of tables
Table 3-1. Background characteristics of respondents (N=870)
Table 3-2. Experiment design 1
Table 3-3. Experiment design 2
Table 3-4. Experiment design 3
Table 3-5. Measurement items of brand familiarity
Table 3-6. Measurement items of online herd behavior
Table 3-7. Pretest questions
Table 3-8. Operational definitions and scenarios of the variables
Table 4-1. Analysis results (ANOVA) of experiment 1
Table 4-2. Interaction effect of sales volume framing at a large scale
Table 4-3. Interaction effect of sales volume framing at a small scale
Table 4-4. Interaction effect between increased sales volume at a large scale using an absolute value and brand familiarity
Table 4-5. Interaction effect between increased sales volume at a small scale using a relative value and brand familiarity
Table 4-6. Analysis results (ANOVA) of experiment 2
Table 4-7. Interaction effect of low inventory level
Table 4-8. Interaction effect between inventory and brand familiarity
Table 4-9. Analysis results (ANOVA) of experiment 3
Table 4-10. Interaction effect between increased sales volume at a large scale using an absolute value and time interval
Table 4-11. Interaction effect between increased sales volume at a small scale using a relative value and time interval
Table 4-12. Summary of hypotheses test
List of figures
Figure 3-1. Research framework 1
Figure 3-2. Research framework 2
Figure 3-3. Research framework 3
Figure 4-1. Interaction effect between scale of sales volume framing and sales volume framing
Figure 4-2. Interaction effect between scale of sales volume framing, sales volume framing and brand familiarity
Figure 4-3. Interaction effect of low inventory level
Figure 4-4. Interaction effect between inventory and brand familiarity
Figure 4-5. Interaction effect between scale of sales volume framing, sales volume framing and time interval

Achabal, D. D., McIntyre, S. and Smith, S. A. (1990). Maximizing profits from periodic department store promotions. Journal of Retailing, 66(4), 383-407.
Ajzen, I. and Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888-918.
Alba, J. W. and Hutchinson, J. W. (1987). Dimensions of consumer expertise. Journal of Consumer Research, 13(4), 411-454.
Asch, S. E. (1956). Studies of independence and conformity: A majority of one against a unanimous majority. Psychological Monographs, 70(9), 1-70.
Avnet, T. and Higgins, E. T. (2006). How regulatory fit affects value in consumer choices and opinions. Journal of Marketing Research, 43(1), 1-10.
Aydinliyim, T., Pangburn, M., and Rabinovich, E. (2015). Inventory disclosure in online retailing. Available from: http://www.researchgate.net/profile/Tolga_Aydinliyim/publication/266260202_Inventory_Disclosure_in_Online_Retailing/links/5567e38208aefcb861d38e18.pdf. (Retrieved from Jul. 19. 2015)
Bone, P. F. (1995). Word-of-mouth effects on short-term and long-term product judgments. Journal of Business Research, 32(3), 213-223.
Brashers, D. E. (2001). Communication and uncertainty management. Journal of Communication, 51(3), 477-497.
Brashers, D. E., Neidig, J. L., Haas, S. M., Dobbs, L. K., Cardillo, L. W. and Russell, J. A. (2000). Communication in the management of uncertainty: The case of persons living with HIV or AIDS. Communications Monographs, 67(1), 63-84.
Breugelmans, E., Köhler, C. F., Dellaert, B. G. and de Ruyter, K. (2012). Promoting interactive decision aids on retail websites: A message framing perspective with new versus traditional focal actions. Journal of Retailing, 88(2), 226-235.
Buhalis, D. (2003). eTourism: Information technology for strategic tourism management: Pearson Education.
Carare, O. (2012). The impact of bestseller rank on demand: Evidence from the app market. International Economic Review, 53(3), 717-742.
Chang, E. C. and Tseng, Y. F. (2013). Research note: E-store image, perceived value and perceived risk. Journal of Business Research, 66(7), 864-870.
Chen, J., Teng, L., Yu, Y. and Yu, X. (2016). The effect of online information sources on purchase intentions between consumers with high and low susceptibility to informational influence. Journal of Business Research, 69(2), 467-475.
Chen, S. F. S., Monroe, K. B. and Lou, Y. C. (1998). The effects of framing price promotion messages on consumers'' perceptions and purchase intentions. Journal of Retailing, 74(3), 353-372.
Chen, Y. F. (2008). Herd behavior in purchasing books online. Computers in Human Behavior, 24(5), 1977-1992.
Chen, Y. F. and Lu, H. F. (2015). We‐commerce: Exploring factors influencing online group‐buying intention in Taiwan from a conformity perspective. Asian Journal of Social Psychology, 18(1), 62-75.
Chernev, A. (2004). Goal-attribute compatibility in consumer choice. Journal of Consumer Psychology, 14(1), 141-150.
Close, A. G. and Kukar-Kinney, M. (2010). Beyond buying: Motivations behind consumers'' online shopping cart use. Journal of Business Research, 63(9), 986-992.
Cox, C. A. (2015). Decomposing the effects of negative framing in linear public goods games. Economics Letters, 126, 63-65.
Delmar, F. (1997). Measuring growth: methodological considerations and empirical results. In R. Donckels and A. Miettinen (Eds.), Entrepreneurship and SME Research: On its Way to the Next Millennium: 199-216. Aldershot, England: Ashgate.
Delmar, F., Davidsson, P. and Gartner, W. B. (2003). Arriving at the high-growth firm. Journal of Business Venturing, 18(2), 189-216.
Deutsch, M. and Gerard, H. (1955). A study of normative and informational influence upon individual judgement. Journal of Abnormal and Social Psychology, 51(3), 629-636.
Dholakia, U. M., Basuroy, S. and Soltysinski, K. (2002). Auction or agent (or both)? A study of moderators of the herding bias in digital auctions. International Journal of Research in Marketing, 19(2), 115-130.
Freling, T. H., Vincent, L. H. and Henard, D. H. (2014). When not to accentuate the positive: Re-examining valence effects in attribute framing. Organizational Behavior and Human Decision Processes, 124(2), 95-109.
Gendall, P., Hoek, J., Pope, T. and Young, K. (2006). Message framing effects on price discounting. Journal of Product &; Brand Management, 15(7), 458-465.
Gifford, R. and Comeau, L. A. (2011). Message framing influences perceived climate change competence, engagement, and behavioral intentions. Global Environmental Change, 21(4), 1301-1307.
Granger, C. W. J. and Lee, T. H. (1989). Investigation of production, sales and inventory relationships using multicointegration and non‐symmetric error correction models. Journal of Applied Econometrics, 4(1), 145-159.
Ho, E., Kowatsch, T. and Ilic, A. (2014). The sales velocity effect on retailing. Journal of Interactive Marketing, 28(4), 237-256.
Hu, N., Koh, N. S. and Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42-53.
Huang, J. H., and Chen, Y. F. (2006). Herding in online product choice. Psychology &; Marketing, 23(5), 413-428.
Huang, L., Tan, C. H. and Wei, K. K. (2013). The effect of product review presentation and product type on customer evaluations. Paper presented at the PACIS.
Internet Word States. (2015). Internet usage statistics: The Internet big picture. Available from: http://www.internetworldstats.com/stats.htm. (Retrieved from Mar. 15. 2016)
Jones, M. and Sieck, W. R. (2003). Learning myopia: An adaptive recency effect in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(4), 626-639.
Kantar Worldpanel Taiwan. (2015). Accelerating the growth of e-commerce - 2015 Edition. Available from: http://www.kantarworldpanel.com/tw/news/Accelerating-the-growth-of-e-commerce-2015-Edition. (Retrieved from Nov. 8. 2015)
Keren, G. (2007). Framing, intentions, and trust-choice incompatibility. Organizational Behavior and Human Decision Processes, 103(2), 238-255.
Koschat, M. A. (2008). Store inventory can affect demand: Empirical evidence from magazine retailing. Journal of Retailing, 84(2), 165-179.
Kulviwat, S., Bruner II, G. C. and Al-Shuridah, O. (2009). The role of social influence on adoption of high tech innovations: The moderating effect of public / private consumption. Journal of Business Research, 62(7), 706-712.
Lascu, D. N. and Zinkhan, G. (1999). Consumer conformity: Review and applications for marketing theory and practice. Journal of Marketing Theory and Practice, 7(3), 1-12.
Levin, I. P. and Gaeth, G. J. (1988). How consumers are affected by the framing of attribute information before and after consuming the product. Journal of Consumer Research, 15(3), 374-378.
Levin, I. P., Schneider, S. L. and Gaeth, G. J. (1998). All frames are not created equal: A typology and critical analysis of framing effects. Organizational Behavior and Human Decision Processes, 76(2), 149-188.
Martin, R., Gardikiotis, A. and Hewstone, M. (2002). Levels of consensus and majority and minority influence. European Journal of Social Psychology, 32(5), 645-665.
Mayer, N. D. and Tormala, Z. L. (2010). “Think” versus “feel” framing effects in persuasion. Personality and Social Psychology Bulletin, 36(4), 443-454.
Micu, C. C. and Chowdhury, T. G. (2010). The effect of message''s regulatory focus and product type on persuasion. Journal of Marketing Theory and Practice, 18(2), 181-190.
Moshrefjavadi, M. H., Dolatabadi, H. R., Nourbakhsh, M. M., Poursaeedi, A. and Asadollahi, A. (2012). An analysis of factors affecting on online shopping behavior of consumers. International Journal of Marketing Studies, 4(5), 81-98.
Mukherjee, A. and Hoyer, W. D. (2001). The effect of novel attributes on product evaluation. Journal of consumer Research, 28(3), 462-472.
Myers, D. G. (2008). Social thinking, the self in a social world. Social Psychology, 43, 51-56.
National Development Council. (2016). Taiwan Digital Opportunity Survey. Available from: http://www.ndc.gov.tw/Default.aspx. (Retrieved from Mar. 19. 2016)
Nepomuceno, M. V., Laroche, M. and Richard, M.O. (2014). How to reduce perceived risk when buying online: The interactions between intangibility, product knowledge, brand familiarity, privacy and security concerns. Journal of Retailing and Consumer Services, 21(4), 619-629.
Ozok, A. A. and Wei, J. (2010). An empirical comparison of consumer usability preferences in online shopping using stationary and mobile devices: Results from a college student population. Electronic Commerce Research, 10(2), 111-137.
Park, C. W. and Lessig, V. P. (1977). Students and housewives: Differences in susceptibility to reference group influence. Journal of Consumer Research, 4(2), 102-110.
Parks, C. D., Sanna, L. J. and Berel, S. R. (2001). Actions of similar others as inducements to cooperate in social dilemmas. Personality and Social Psychology Bulletin, 27(3), 345-354.
Pesendorfer, M. (2002). Retail sales: A study of pricing behavior in supermarkets. The Journal of Business, 75(1), 33-66.
Petty, R. E. and Wegener, D. T. (1999). The elaboration likelihood model: Current status and controversies. In S. Chaiken, and Y. Trope (Eds.), Dual process theories in social psychology: 41-72. New York, NY: Guilford Press.
Robins, G., Pattison, P. and Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66(2), 161-189.
Robinson, S. G. (2011). Diminished Product Inventory: The effects of visible quantity on choice in retail settings. Available from: http://diginole.lib.fsu.edu/cgi/viewcontent.cgi?article=4518&;context=etd. (Retrieved from Jul. 8. 2015)
Salisbury, W. D., Pearson, R. A., Pearson, A. W. and Miller, D. W. (2001). Perceived security and World Wide Web purchase intention. Industrial Management &; Data Systems, 101(4), 165-177.
Schmidt, J. B. and Spreng, R. A. (1996). A proposed model of external consumer information search. Journal of the Academy of Marketing Science, 24(3), 246-256.
Shugan, S. M. (1980). The cost of thinking. Journal of Consumer Research, 7(1980), 99-111.
Stewart, D. W. (1992). Speculations on the future of advertising research. Journal of Advertising, 21(3), 1-18.
Sundaram, D. and Webster, C. (1999). The role of brand familiarity on the impact of word-of-mouth communication on brand evaluations. Advances in Consumer Research, 26, 664-670.
Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124-1131.
Ulbrich, F., Christensen, T. and Stankus, L. (2011). Gender-specific on-line shopping preferences. Electronic Commerce Research, 11(2), 181-199.
Vallerand, R. J., Pelletier, L. G., Blais, M. R., Briere, N. M., Senecal, C. and Vallieres, E. F. (1992). The academic motivation scale: A measure of intrinsic, extrinsic, and a motivation in education. Educational and Psychological Measurement, 52(4), 1003-1017.
Vishwanath, A. (2003). Comparing online information effects a cross-cultural comparison of online information and uncertainty avoidance. Communication Research, 30(6), 579-598.
Von-Borgstede, C., Dahlstrand, U. and Biel, A. (1999). From ought to is: Moral norms in large-scale social dilemmas. Goteborg Psychological Reports, 29, 1-19.
Wolfe, H. B. (1968). A model for control of style merchandise. Industrial Management Review, 9(2), 69.
Wu, C. S. and Cheng, F. F. (2011). The joint effect of framing and anchoring on internet buyers’ decision-making. Electronic Commerce Research and Applications, 10(3), 358-368.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top