跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊宏
研究生(外文):Chun-Hong Chen
論文名稱:視角取向對T=3病毒顆粒三維重建之影響
論文名稱(外文):The Effects of Prefer Orientation on Three-Dimensional Reconstruction of T = 3 Virus Particles
指導教授:林全信林全信引用關係
指導教授(外文):Chan-Shing Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物科技暨資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:121
中文關鍵詞:視角影像重建雜訊三維重建
外文關鍵詞:PurdueEMthree-dimensional reconstructionnoiseRNA-cageorientationimage reconstructionSPIDER
相關次數:
  • 被引用被引用:1
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來Cyro-EM 與影像重建,已經成為檢驗病毒與研究病毒的結構的主要工具,這種鑑定結構的方式具有快速,且能保持樣品原有型態的特點。使用軟體方式模擬三種病毒DGNNV、PaV 以及TBSV 的影像具有相當極端的偏好方位,再使用SPIDER 以及PurdueEM 以投影比對的方式來重建模型。SPIDER 偏好三重與五重對稱軸端視角,
PurdueEM 偏好二重對稱軸端視角。SPIDER 可以重建出加了與
PurdueEM 相比較多量雜訊的影像。RNA-cage 的結構跟病毒外殼相關。偏好方位、雜訊以及RNA 這三種視角取向均會影響病毒顆粒三維重建。
Cyro-EM and three-dimensional reconstruction have become important research tools for virus structure. These techniques have benefit of fast and keep samples in native folding. Simulated prefer orientation images of DGNNV, PaV and TBSV were reconstructed by SPIDER or PurdueEM, with projection matching with. SPIDER prefers 3-fold and 5-fold view fields, and PurdueEM prefers 2-fold view fields. SPIDER could reconstruction images which have more noise than PurdueEM can successfully reconstruct. Reconstruction of RNA-cages has some
relationship with the symmetry of capsid protein. Prefer orientation, noise and RNA-cages are the factors that can effect reconstruction.
摘要......................................................................................................................................................... I
ABSTRACT ........................................................................................................................................ III
目錄...................................................................................................................................................... IV
圖目錄.................................................................................................................................................. VI
壹、前言.................................................................................................................................................1
一、 電子顯微鏡...........................................................................................................................1
二、 冷凍電子顯微鏡...................................................................................................................3
三、 單一顆粒影像重建原理.......................................................................................................4
1. 共通線..................................................................................................................................5
2. Random-conical.....................................................................................................................6
3. 投影比對...............................................................................................................................6
四、 立體重建原理.......................................................................................................................6
1. 權衡式反投影.......................................................................................................................7
2. 傅立葉重建...........................................................................................................................7
五、 影像重建軟體與重建流程...................................................................................................7
A. EMAN..................................................................................................................................7
B. PurdueEM...........................................................................................................................12
C. SPIDER..............................................................................................................................16
六、 近期發展況狀.....................................................................................................................17
七、 偏好方位.............................................................................................................................21
貳、材料與方法...................................................................................................................................23
一、 測試軟體版本.....................................................................................................................23
二、 製作測試影像.....................................................................................................................23
1. 測試模型製作.....................................................................................................................23
2. 設定投影角度.....................................................................................................................23
3. 投影測試影像.....................................................................................................................23
5. 建立初始模型.....................................................................................................................24
三、 檔案格式轉換.....................................................................................................................24
1. 平面影像.............................................................................................................................25
2. 平面影像:其他格式轉換至PurdueEM...........................................................................25
3. 平面影像:PurdueEM (PIF)至其他軟體...........................................................................26
4. 立體模型.............................................................................................................................26
四、 PurdueEM 影像重建...........................................................................................................26
五、 SPIDER 影像重建..............................................................................................................28
六、 Fouriel shell correlation.......................................................................................................33
七、 數據統計.............................................................................................................................33
八、 偏好方位測試.....................................................................................................................34
九、 雜訊....................................................................................................................................34
十、 RNA-cage...........................................................................................................................34
參、結果...............................................................................................................................................35
一、 正二十面體角度定義.........................................................................................................35
二、 DGNNV 偏好方位測試......................................................................................................35
三、 PaV 偏好方位測試.............................................................................................................38
四、 TBSV 偏好方位測試..........................................................................................................38
五、 雜訊....................................................................................................................................40
六、 RNA-cage...........................................................................................................................41
肆、討論...............................................................................................................................................44
一、 偏好方位測試.....................................................................................................................44
二、 雜訊....................................................................................................................................49
三、 RNA-cage...........................................................................................................................50
伍、參考文獻.......................................................................................................................................52
陸、圖表...............................................................................................................................................58
Fig. 1 Definition of view orientation angles of asymmetric unit in an
icosahedral virion.................................................................................58
Fig. 2 3D models of DGNNV, PaV and TBSV............................................59
Fig. 3 Reference images of DGNNV...........................................................61
Fig. 4 References of PaV .............................................................................63
Fig. 5 References of TBSV..........................................................................65
Fig. 6 View field along 2-5-lateral reconstruction by SPIDER of DGNNV.67
Fig. 7 View field along 2-5-lateral within 14o -25o reconstruction by
SPIDER of DGNNV.............................................................................69
Fig. 8 View field along 2-5-lateral reconstruction by PurdueEM of DGNNV.
..............................................................................................................71
Fig. 9 View field along 2-5-lateral with in 10o -18o reconstruction by
PurdueEM of DGNNV. ........................................................................73
Fig. 10 View field along 2-3-lateral reconstruction by PurdueEM of
DGNNV................................................................................................75
Fig. 11 View field along 3-5-lateral reconstruction by SPIDER of DGNNV.
..............................................................................................................77
Fig. 12 View field along 3-5-lateral reconstruction by PurdueEM of
DGNNV................................................................................................79
Fig. 13 View field along 2-5-lateral reconstruction by SPIDER of PaV......81
Fig. 14 View field along 2-5-lateral reconstruction by PurdueEM of PaV. .83
Fig. 15 View field along 2-5-lateral reconstruction by SPIDER of TBSV. .85
Fig. 16 View field along 2-5-lateral reconstruction by PurdueEM of TBSV.
..............................................................................................................87
Fig. 17 View field along 2-3-lateral reconstruction by SPIDER of TBSV. .89
Fig. 18 View field along 2-3-lateral reconstruction by PurdueEM of TBSV.
..............................................................................................................91
Fig. 19 View field along 3-5-lateral reconstruction by SPIDER of TBSV. .93
Fig. 20 View field along 3-5-lateral reconstruction by PurdueEM of TBSV.
..............................................................................................................95
Fig. 21 FSC curve of DGNNV maps reconstructed SPIDER and PurdueEM.
..............................................................................................................96
Fig. 22 FSC curve of PaV maps reconstructed by SPIDER and PurdueEM.
..............................................................................................................97
Fig. 23 FSC curve of TBSV maps reconstructed by SPIDER and
PurdueEM. ...........................................................................................98
Fig. 24 Noise effects on 3D-reconstruction of DGNNV by SPIDER..........99
Fig. 25 Noise effects on 3D-reconstruction of DGNNV by PurdueEM. ...100
Fig. 26 Noise effects on 3D-reconstruction of PaV by SPIDER. ..............101
Fig. 27 Noise effects on 3D-reconstruction of PaV by PurdueEM............102
Fig. 28 Noise effects on 3D-reconstruction of TBSV by SPIDER............103
Fig. 29 Noise effects on 3D-reconstruction of TBSV by PurdueEM. .......104
Fig. 30 Reconstruction of DGNNV RNA-cage 2-fold to 2-fold................105
Fig. 31 Reconstruction of DGNNV RNA-cage 2-fold-90o to 2-fold.........106
Fig. 32 Reconstruction of DGNNV RNA-cage with 5-fold to 2-fold. ......107
Fig. 33 Reconstruction of DGNNV RNA-cage with 3-fold to 2-fold. ......108
Fig. 34 Angular variance distribution of NNV, PaV and TBSV along
2-5-lateral...........................................................................................109
Fig. 35 Angular variance distribution of NNV, PaV and TBSV along
3-2-lateral...........................................................................................110
Fig. 36 Angular variance distribution of NNV, PaV and TBSV along
3-2-lateral........................................................................................... 111
Adrian, M., Dubochet, J., Lepault, J., & McDowall, A. W. (1984).
Cryo-electron microscopy of viruses. Nature, 308(5954), 32-36.
Baker, T. S., Olson, N. H., & Fuller, S. D. (1999). Adding the third dimension
to virus life cycles: three-dimensional reconstruction of icosahedral
viruses from cryo-electron micrographs. Microbiology and molecular
biology reviews : MMBR, 63(4), 862-922.
Baker, T. S., & Cheng, R. H. (1996). A Model-Based Approach for
Determining Orientations of Biological Macromolecules Imaged by
Cryoelectron Microscopy. Journal of Structural Biology, 116(1),
120-130.
Baxter, W. T., Leith, A., & Frank, J. (2007). SPIRE: The SPIDER
Reconstruction Engine. Journal of Structural Biology, 157(1), 56-63.
Böttcher, B., Wynne, S. A., & Crowther, R. A. (1997). Determination of the
fold of the core protein of hepatitis B virus by electron cryomicroscopy.
Nature, 386(6620), 88-91.
CASPAR, D. L., & KLUG, A. (1962). Physical principles in the construction
of regular viruses. Cold Spring Harbor symposia on quantitative biology,
27, 1-24.
Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P. T., Stahl, S. J., & Steven,
A. C. (1997). Visualization of a 4-helix bundle in the hepatitis B virus
capsid by cryo-electron microscopy. Nature, 386(6620), 91-94.
CROWTHER, R. A., AMOS, L. A., FINCH, J. T., DE ROSIER, D. J., &
KLUG, A. (1970). Three Dimensional Reconstructions of Spherical
Viruses by Fourier Synthesis from Electron Micrographs. Nature,
226(5244), 421-425.
CROWTHER, R. A., & KLUG, A. (1974). Three dimensional image
reconstruction on an extended field - a fast, stable algorithm. Nature,
251(5475), 490-492.
Crowther, R. A. (1971). Procedures for Three-Dimensional Reconstruction of
Spherical Viruses by Fourier Synthesis from Electron Micrographs.
Royal Society of London Philosophical Transactions Series B, 261,
221-230.
DE ROSIER, D. J., & KLUG, A. (1968). Reconstruction of Three
Dimensional Structures from Electron Micrographs. Nature, 217(5124),
130-134.
DeRosier, D. J., & Moore, P. B. (1970). Reconstruction of three-dimensional
images from electron micrographs of structures with helical symmetry.
Journal of Molecular Biology, 52(2), 355-362.
Finch, J. T., Crowther, R. A., Hendry, D. A., & Struthers, J. K. (1974). The
Structure of Nudaurelia capensis beta Virus: the First Example of a
Capsid with Icosahedral Surface Symmetry T = 4. J Gen Virol, 24(1),
191-200.
Fotin, A., Cheng, Y., Sliz, P., Grigorieff, N., Harrison, S. C., Kirchhausen, T., .
(2004). Molecular model for a complete clathrin lattice from electron
cryomicroscopy. Nature, 432(7017), 573-579.
Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., .
SPIDER and WEB: processing and visualization of images in 3D
electron microscopy and related fields. Journal of structural biology,
116(1), 190-9.
Frank, J., Shimkin, B., & Dowse, H. (1981). Spider--A modular software
system for electron image processing. Ultramicroscopy, 6(4), 343-357.
Fuller, S. D., Butcher, S. J., Cheng, R. H., & Baker, T. S. (1996).
Three-Dimensional Reconstruction of Icosahedral Particles--The
Uncommon Line. Journal of Structural Biology, 116(1), 48-55.
Grigorieff, N. (2000). Resolution measurement in structures derived from
single particles. Acta crystallographica. Section D, Biological
crystallography, 56(Pt 10), 1270-7.
Jack, A., Harrison, S. C., & Crowther, R. A. (1975). Structure of tomato bushy
stunt virus. II. Comparison of results obtained by electron microscopy
and x-ray diffraction. Journal of molecular biology, 97(2), 163-72.
Kolodziej, S. J., Klueppelberg, H., Nolasco, N., Ehses, W., Strickland, D. K.,
& Stoops, J. K. (1998). Three-Dimensional Structure of the Human
Plasmin [alpha]2-Macroglobulin Complex. Journal of Structural
Biology, 123(2), 124-133.
Ludtke, S. J., Baldwin, P. R., & Chiu, W. (1999). EMAN: semiautomated
software for high-resolution single-particle reconstructions. Journal of
structural biology, 128(1), 82-97.
Ludtke, S. J., Serysheva, I. I., Hamilton, S. L., & Chiu, W. (2005). The Pore
Structure of the Closed RyR1 Channel. Structure, 13(8), 1203-1211.
Menetret, J., Hegde, R. S., Heinrich, S. U., Chandramouli, P., Ludtke, S. J.,
Rapoport, T. A.,. (2005). Architecture of the Ribosome-Channel
Complex Derived from Native Membranes. Journal of Molecular
Biology, 348(2), 445-457.
Nakagawa, A., Miyazaki, N., Taka, J., Naitow, H., Ogawa, A., Fujimoto, Z., .
(2003). The Atomic Structure of Rice dwarf Virus Reveals the
Self-Assembly Mechanism of Component Proteins. Structure, 11(10),
1227-1238.
Radermacher, M. (1988). Three-dimensional reconstruction of single particles
from random and nonrandom tilt series. Journal of electron microscopy
technique, 9(4), 359-94.
Schatz, M., & van Heel, M. Invariant classification of molecular views in
electron micrographs. Ultramicroscopy, 32(3), 255-64.
Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I., . (2007).
EMAN2: An extensible image processing suite for electron microscopy.
Journal of Structural Biology, 157(1), 38-46.
Tang, L., Lin, C., Krishna, N. K., Yeager, M., Schneemann, A., & Johnson, J.
E. (2002). Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses.
Journal of virology, 76(12), 6370-5.
Tischendorf, G. W., Zeichhardt, H., & Stöffler, G. (1974). Determination of
the location of proteins L14, L17, L18, L19, L22, L23 on the surface of
the 50S ribosomal subunit of Escherichia coli by immune electron
microscopy. Molecular & general genetics : MGG, 134(3), 187-208.
van Heel, M. (1984). Multivariate statistical classification of noisy images
(randomly oriented biological macromolecules). Ultramicroscopy,
13(1-2), 165-83.
van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R., & Schatz, M. (1996). A
New Generation of the IMAGIC Image Processing System. Journal of
Structural Biology, 116(1), 17-24.
Wynne, S. A., Crowther, R. A., & Leslie, A. G. W. (1999). The Crystal
Structure of the Human Hepatitis B Virus Capsid. Molecular Cell, 3(6),
771-780.
Yan, X., Dryden, K. A., Tang, J., & Baker, T. S. (2007). Ab initio random
model method facilitates 3D reconstruction of icosahedral particles.
Journal of Structural Biology, 157(1), 211-225.
Yan, X., Sinkovits, R. S., & Baker, T. S. (2007). AUTO3DEM--an automated
and high throughput program for image reconstruction of icosahedral
particles. Journal of Structural Biology, 157(1), 73-82.
Zhou, Z. H., Baker, M. L., Jiang, W., Dougherty, M., Jakana, J., Dong, G.
(2001). Electron cryomicroscopy and bioinformatics suggest protein
fold models for rice dwarf virus. Nat Struct Mol Biol, 8(10), 868-873.
Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J., & Chiu, W. (2000).
Seeing the Herpesvirus Capsid at 8.5 Å . Science, 288(5467), 877-880.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top