跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥佐
研究生(外文):Yan-Tsuo Lee
論文名稱:以氧化鎂鋅包覆氧化鋅之異質奈米柱結構成長與特性
論文名稱(外文):Synthesis and Characterization of Core-ZnO/Shell-MgZnO Heterostructure Nanorods
指導教授:洪魏寬
指導教授(外文):W. K. Hung
口試委員:黃智賢林泰源王耀德
口試委員(外文):Jih-Shang HwangT. Y. LinY. T. Wang
口試日期:2009-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:奈米柱氧化鋅氧化鎂鋅殼核異質結構
外文關鍵詞:nanorodsZnOMgZnOcore-shell heterostructure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩個階段製程,第一階段是製作氧化鋅準直奈米柱,先利用PLD在sapphire基板上製作約68nm氧化鋅緩衝層,再利用氣相傳輸法在緩衝層上成長氧化鋅準直奈米柱。並利用SEM觀察表面結構,奈米柱直徑約30±5nm、長約1.3 μm,經XRD觀察成長方向為[0002],PL強度與結晶品質良好且沒出現DLE。
第二階段是使用氧化鎂(4N8)與氧化鋅(4N5)莫爾比1:10與1:4混合製成氧化鎂鋅靶材,利用PLD鍍氧化鎂鋅以包覆氧化鋅準直奈米柱,使結構成為core-ZnO/shell-MgZnO異質奈米柱。在僅改變雷射發數條件下,利用HRTEM觀察其氧化鎂鋅外殼的厚度變化,殼層的晶格常數介於氧化鎂與氧化鋅之間,驗證出殼層為MgxZn1-xO單晶相。利用PL量測得知氧化鋅(3.298eV)、(1:10)mol% MgxZn1-xO(~3.594eV )與(1:4)mol% MgxZn1-xO( ~3.935eV )。從TEM與PL量測下,根據計算可得到前者成分比為x=0.14而後者為x=0.3。隨著雷射發數的增加,MgxZn1-xO的峰值越趨顯著,故我們可藉由控制殼層厚度達到控制MgxZn1-xO光激發受激輻射的放光強度。
The formation of heterostrucure in nanorods is essential for their potential applications in nanoelectronic and photonic devices. Here we demonstrate that vertically well-aligned ZnO nanorods and ZnO/MgZnO core-shell nanorods can be successfully synthesized via catalyst-free vapor phase transport combined with pulsed laser deposition (PLD) method.
The thesis consists of two parts. First, the vertically well-aligned ZnO nanorods were grown on a PLD-predeposited ZnO thin film via a simple thermal evaporation and vapor transport process. These ZnO nanorods were quite uniform with a diameter of ~27 nm and length of ~1 μm. Room-temperature photoluminescence spectra of the samples showed only a strong band-edge emission, indicating the high crystalline quality. The well-aligned ZnO nanorods were used as a template for the synthesis of nanorod heterostructures.
In the second part, the vertically well-aligned ZnO/MgZnO core-shell structures of the nanorods were synthesized by PLD of MgZnO onto the ZnO nanorod template. The core-shell heterostructure nanorods were examined by high-resolution transmission electron microscopy measurements. The optical properties of the heterostructure nanorods were analyzed by photoluminescence. The HRTEM images and the corresponding FFT patterns of the nanorods implied that the core/shell is wurtzite structured ZnO/MgZnO with well-defined epitaxial relationship. The positions of the MgxZn1-xO shells, obtained by pused laser ablating MgyZn1-yO targets with y=0.0909 and 0.25, were determained by the Vegard’s law to be x=0.14 and 0.30, respectively. Room-temperature PL spectrum from the ZnO/MgxZn1-xO core-shell nanorods exhibits strong emissions from ZnO core (located at 3.298eV) and MgxZn1-xO shell (located at 3.539eV for x=0.14 and 3.935eV for x=0.30). The core/shell relative emission intensity can be controlled by the shell thickness.
摘 要 i
英文摘要 ii
誌 謝 iii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 氧化鋅奈米結構 2
1.2.2 氧化鋅光學特性 6
1.2.3 氧化鎂鋅奈米結構介紹 9
1.3 研究動機 14
第二章 材料簡介與製程方法原理 15
2.1 實驗材料介紹 15
2.1.1 氧化鋅(Zinc Oxide, ZnO)結構與特性 15
2.1.2 氧化鎂鋅(MgZnO)結構與特性 16
2.2 一維奈米結構成長機制 18
2.2.1 氣-液-固成長(vapor-liquid-solid mechanism, VLS) 18
2.2.2 氣-固成長(vapor-solid mechanism, VS) 19
2.2.3 碳熱還原反應 19
2.2.4 脈衝雷射蒸鍍法(pulsed laser deposition, PLD) 20
2.3 TEM之晶格成像原理與晶格指數分析 21
2.3.1 晶格繞射平面原理 21
2.3.2 電子繞射譜繞射常數測定 24
2.3.3 HRTEM影像處理優化模擬原理 25
2.4 氧化鎂鋅之摻量計算原理 27
第三章 實驗架構與量測儀器 29
3.1 實驗流程與架構 29
3.1.1 實驗流程 29
3.1.2 實驗細部與架構 30
3.1.3 TEM試片之製作方法 33
3.2 掃描式電子顯微鏡 (SEM) 35
3.3 能量散佈光譜儀 (EDS) 37
3.4 高解析穿透式電子顯微鏡 (HR-TEM) 38
3.4.1 穿透式電子顯微鏡的基本原理 38
3.4.2 穿透式電子顯微鏡的結構 39
3.5 X光繞射分析儀 (XRD) 42
3.5.1 X光射線譜 42
3.5.2 分析儀簡介 44
3.6 光激螢光光譜 (PL) 46
3.6.1 光激發螢光原理 46
3.6.2 光激發螢光量測系統架構 48
3.7 拉曼散射光譜 (Raman scattering spectroscopy) 49
3.7.1 拉曼光譜產生的機制與基本原理 49
第四章 實驗結果與討論 52
4.1 製作高方向性且高均度之準直氧化鋅奈米柱 52
4.1.1 氧化鋅緩衝層(ZnO buffer layer)製作參數 52
4.1.2 準直氧化鋅奈米柱成長 55
4.1.3 準直氧化鋅奈米柱SEM與形貌分析 56
4.1.4 準直氧化鋅奈米柱PL分析 60
4.1.5 準直氧化鋅奈米柱XRD分析 61
4.2 以PLD製備氧化鎂鋅包覆準直氧化鋅奈米柱結構 62
4.2.1 氧化鎂鋅包覆層之參數 62
4.2.2 以氧化鎂鋅包覆之形貌分析 63
4.2.3 以氧化鎂鋅包覆之PL分析 81
4.2.4 鎂掺量x之計算 89
4.2.5 以氧化鎂鋅包覆之Raman分析 91
第五章 92
參考文獻 94
[1] Xian-Hua Zhang, Su-Yuan Xie, Zhi-Yuan Jiang, Xuan Zhang, Zhong-Qun Tian, Zhao-Xiong Xie, Rong-Bin Huang, Lan-Sun Zheng, " Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Rational Design and Fabrication of ZnO Nanotubes from Nanowire Templates in a Microwave Plasma System," J. Phys. Chem. B, 107, 2003.
[2] Yanhong Tong, Yichun Liu, Changlu Shao, Yuxue Liu, Changshan Xu, Jiying Zhang, Youming Lu, Dezhen Shen, Xiwu Fan, " Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes," J. Phys. Chem. B, 110, 2006.
[3] Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, " Nanobelts of Semiconducting Oxides," Science, 291, 2001.
[4] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang " Room-Temperature Ultraviolet Nanowire Nanolasers," Science, 292, 2001, pp. 1897-1899.
[5] Aleksandra B. Djurisˇic, Yu Hang Leung, small 2, No.8-9, 2006, pp. 944-961.
[6] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kreigseis, D. Forster,F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak,U. Haboeck, A. V. Rodina, Phys. Stat. Sol. B 2004.
[7] A. Teke, , S. Dog˘an, X. Gu, H. MorkoA, B. Nemeth, J.Nause, H. O. Everitt, Phys. Rev. B, 70, 2004.
[8] J. Gutowski, N. Presser, I. Broser, Phys. Rev. B ,38, 1988.
[9] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kreigseis, D. Forster,F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak,U. Haboeck, A. V. Rodina, Phys. Stat. Sol. B ,241, 2004.
[10] M. Strassburg, A. Rodina, M. Dworzak, U. Haboeck, I. L. Krestnikov,A. Hoffmann, O. Gelhausen, M. R. Phillips, H. R. Alves,A. Zeuner, D. M. Hofmann, B. K. Meyer, Phys. Stat. Sol. B ,241, 607, 2004.
[11] L. Wang, N. C. Giles, J. Appl. Phys. ,94, 973, 2003.
[12] H.C. Hsu, W.F. Hsieh, Solid State Commun. ,131, 371, 2004.
[13] X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys. ,95, 2004.
[14] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Appl. Phys. Lett., 88, 2006.
[15] J. S. Jie, G. Z. Wang, X. H. Han, Q. X. Yu, Y. Liao, G. P. Li, J. G.Hou, Chem. Phys. Lett., 387, 466, 2004.
[16] B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, and Y. Segawa, N. Usami, " Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures," J. Phys. D: Appl. Phys., 40, 2007.
[17] GangWang, Zhizhen Ye, Haiping He, Haiping Tang, Jiesheng Li, " Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect," Appl. Phys. Lett., 86, 2005.
[18] Liping Zhu, Mingjia Zhi, Zhizhen Ye, and Binghui Zhao, " Catalyst-free two-step growth of quasialigned ZnMgO nanorods and their properties," Appl. Phys. Lett., 88, 2006.
[19] Bo Hyun Kong, Sanjay Kumar Mohanta, Young Yi Kim, Hyung Koun Cho, " Synthesis and characterization of ZnO/MgZnO heterostructure nanorods by simple two-step evaporation," Nanotechnology, 19, 2008.
[20] C Czekalla, J Guinard, CHanisch, B Q Cao, EMKaidashev,N Boukos, A Travlos, J Renard, B Gayral, D Le Si Dang,MLorenz, M Grundmann, " Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells," J. Appl. Phys. , 101, 2007.
[21] 普傳貴、斐立宅、俞海雲,一維無機納米材料,北京:冶金工業出版社,2007。
[22] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, " A comprehensive review of ZnO materials and devices," JOURNAL OF APPLIED PHYSICS, 98, 2005.
[23] B. Meyer and Dominik Marx, " Density-functional study of the structure and stability of ZnO surfaces," PHYSICAL REVIEW B, 67, 2003.
[24] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, Y. Sakurai and Y. Yoshida, T. Yasuda and Y. Segawa, " MgxZn1-xO as a II–VI widegap semiconductor alloy," APPLIED PHYSICS LETTERS, 72, 19, 1998.
[25] I. Takeuchi, W. Yang, K.-S. Chang, M. A. Aronova, and T. Venkatesan, R. D. Vispute, L. A. Bendersky, " Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads," JOURNAL OF APPLIED PHYSICS, 94, 11, 2003.
[26] T Makino, Y Segawa, M Kawasaki , H Koinuma, " Optical properties of excitons in ZnO-based quantum well heterostructures," SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 20, 2005.
[27] Z. Vashaei, T. Minegishi, T. Yao, " Structural characterization of MgxZn1-xO/ZnO heterostructures," Journal of Crystal Growth, 306, 2007.
[28] S. S. Hullavarad, S. Dhar, B. Varughese, I. Takeuchi, and T. Venkatesan, R. D. Vispute, " Realization of Mg(x=0.15)Zn(1−x=0.85)O-based metal-semiconductor-metal UV detector on quartz and sapphire," Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 23, 4, 2005.
[29] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, and T. Venkatesan, " Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films," APPLIED PHYSICS LETTERS, 80, 9, 2002.
[30] R. S. Wagner, W. C. Ellis, " VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH," APPLIED PHYSICS LETTERS, 4, 5, 1964.
[31] Yiying Wu, Peidong Yang, " Direct Observation of Vapor−Liquid−Solid Nanowire Growth," J. Am. Chem. Soc., 123, 13, 2001, pp. 3165–3166.
[32] Yongjun Chen, Jianbao Li, Yongsheng Han, Xiaozhan Yang, Jinhui Dai, " The effect of Mg vapor source on the formation of MgO whiskers and sheets," Journal of Crystal Growth, 245, 2002.
[33] Yongjun Chen, Jianbao Li, Yongsheng Han, Xiaozhan Yang, Jinhui Dai, " Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," adv. mater., 13, 2, 2001.
[34] 李永軍、劉春艷,「一維無機納米材料的研究進展」,感光科學與光化學,第二十一卷,第六期,2003,第446-468頁。
[35] 陳銘堯,「簡介脈衝雷射蒸鍍法」,物理雙月刊,第十五卷,第五期,1993,第669-673頁。
[36] 賴耿陽,高分解電子顯微鏡 - HRTEM技術原理與利用法,台南:復漢出版社,1989。
[37] 吳杏芳、柳得櫓,電子顯微分析實用方法,北京:冶金工業出版社,1998。
[38] 李天龍,以FFT為架構建立之諧波參數建立方法,碩士,國立中山大學,高雄,民國88。
[39] David B. Williams, C. Barry Carter, Transmission Electron Microscopy, New York: Plenum Press, 1996.
[40] S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, Th. Nobis, M. Lorenz, M. Grundmann, " Luminescence and surface properties of MgxZn1−xO thin films grown by pulsed laser deposition," JOURNAL OF APPLIED PHYSICS, 101, 2007.
[41] M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, and M. Grundmann, " MgxZn1−xO(x <0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition," APPLIED PHYSICS LETTERS, 86, 2005.
[42] L. Reimer, Scanning Electron Microscopy Physics of Image Formation and Microanalysis, New York: Springer, 1998.
[43] 汪建民,材料分析,新竹:中國材料科學學會,2008。
[44] 吳杏芳、柳得櫓,電子顯微分析實用方法,北京:冶金工業出版社,1998。
[45] 祁景玉,X射線結構分析,上海市 : 同濟大學出版發行,2003。
[46] 謝嘉民、賴一凡、林永昌、枋志堯,「光激發螢光量測的原理、架構及應用」,奈米通訊,第十二卷,第二期,2005,第29-30頁。
[47] 田國輝,陳亞傑,馮清茂,「拉曼光譜的發展及應用」,化學工程師,第一百四十八卷,第一期,2008,第1002-1124頁。
[48] 馮建武,「拉曼散射的產生基理及應用」,洛陽師範學院學報,第五期,2007,第180-182頁。
[49] P. Bhattacharya, Rasmi R. Das, R. S. Katiyar, " Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films," Appl. Phys. Lett., 83, 10, 2003.
[50] David B. Williams, C. Barry Carter, Transmission Electron Microscopy, New York: Plenum Press, 1996.
[51] A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, and F. A. Ponce, J. Christenm, S. Tanaka, A. Fujioka, and Y. Nakagawa, " Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1-xN layers," J. Appl. Phys. Lett., 95, 9, 2004.
[52] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,S.-J. Cho, and H. Morkoç, " A comprehensive review of ZnO materials and devices," J. Appl. Phys., 98, 2005.
[53] J. Grabowska, A. Meaney, K. K. Nanda, J.-P. Mosnier, M. O. Henry, J.-R. Duclère, and E. McGlynn, " Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential," Phys. ReV. B, 71, 2005.
[54] L. wischmeier, T. voss, S. b‥orner, W. schade, " Comparison of the optical properties of as-grown ensembles and single ZnO nanowires," Appl. Phys. A, 84, 2006.
[55] M. Al-Suleiman, A. Che Mofor, A. El-Shaer, A. Bakin, H.-H. Wehmann, and A. Waag, " Photoluminescence properties: Catalyst-free ZnO nanorods and layersversus bulk ZnO," Appl. Phys. Lett., 89, 2006.
[56] L Wischmeier, T Voss, I R‥uckmann and J Gutowski, " Correlations between surface-excitonicemission bands in ZnO nanowires," Nanotechnology, 19, 2008.
[57] Rui Zhang, Peng-Gang Yin, Ning Wang, Lin Guo, " Photoluminescence and Raman scattering of ZnO nanorods," Solid State Sciences, 11, 2009.
[58] Bo Hyun Kong, Sanjay Kumar Mohanta, Young Yi Kim, Hyung Koun Cho, " Synthesis and characterization of ZnO/MgZnO heterostructure nanorods by simple two-step evaporation," Nanotechnology, 19, 2008.
[59] B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram,J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, " Bound exciton and donor–acceptor pair recombinations in ZnO," Phys. Status Solidi B, 241, 2004.
[60] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, C. X. Wu, J. Y. Zhang1, B. Yao, " Raman spectra and phonon modes of MgxZn1–xO alloy films," Phys. Stat. Sol. C, 3, 4, 2006.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top