跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐忠義
研究生(外文):Zhong-Yi Xu
論文名稱:利用支鏈依附密度以及主鏈曲度控制予體-受體共軛寡共聚物薄膜結晶方向
論文名稱(外文):Using Side‐chain Attachment Density and Backbone Curvature to Regulate D–A Co-oligomer Crystalline Orientation in Thin Film
指導教授:趙基揚林唯芳林唯芳引用關係
指導教授(外文):Chi-Yang ChaoWei-Fang Su
口試委員:羅世強詹益慈
口試委員(外文):Shyh-Chyang LuoYi-Tsu Chan
口試日期:2016-10-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:寡共聚物噻吩並異靛藍素噻吩導電高分子結晶方向合成吸收光譜能隙分子模擬計算形態
外文關鍵詞:co-oligomerthienoisoindigothiopheneconducting polymercrystal orientationsynthesisabsorption spectraband gapmolecular modelingmorphology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
導電高分子為目前被廣泛研究應用在光電元件中的重要材料,而導電高分子之結晶方向為決定元件內電荷載子遷移率以及元件表現之關鍵,因此控制導電高分子之結晶方向十分重要。依據運作原理,導電高分子之結晶方向在有機場效型電晶體以及有機太陽能電池若分別以側向以及面向結構排列,將有助益於提升其表現。然而控制導電高分子結晶方向之背後機制至今尚不得而知,且目前仍少有相關文獻能夠透過系統性分子設計即能控制結晶方向。此研究中我們由噻吩並異靛藍素為受體、寡噻吩為予體,並由分子設計角度著手,合成出八種交替共軛寡共聚物poly(thienoisoindigo-alt-(xoctylthiophene)n,PTInT-xC8。其中TI為噻吩並異靛藍素、n為予體內噻吩數目、T為噻吩、x為噻吩上正辛烷基 (C8) 數目;再藉以:(1) 增減寡噻吩上正辛烷基數目 (x) 改變支鏈依附密度以及 (2) 增減予體中噻吩數目 (n) 改變主鏈曲度兩項要素依序控制此系列寡共聚物薄膜結晶方向。
我們成功地分別以Stille偶聯反應以及直接芳香化縮聚法合成出此系列寡共聚物,並以核磁共振儀做化學結構鑑定、基質輔助雷射脫附游離飛行時間式質譜儀分析其分子量、低略角廣角X光散射儀分析薄膜結晶結構、紫外光-可見光-近紅外光吸收光譜儀分析光電性質,以及循環伏安儀測量能階位置,並使用熱重分析儀和差示掃描量熱分析儀用作熱性質分析。我們也以密度泛函理論詳細對此八種寡共聚物建構模型做分子模擬計算。研究結果發現:(1) 當噻吩數目 (n) 維持不變,但逐漸增加予體噻吩上支鏈個數 (x) 後,除了分子模擬結果顯示其主鏈將大幅扭轉,吸收光譜中也可觀察到明顯之電子由予體之HOMO躍遷至予體的LUMO之吸收訊號峰 (λ1) 相對強度增加、分子內電荷轉移吸收峰 (λ2) 相對強度下降。由低略角廣角X光散射儀分析其薄膜內結晶形態也指出:寡共聚物鏈位於 (010) 方向之π-π堆疊距離 (dπ-π) 也將被拉大,如PTI2T-0C8、PTI2T-2C8其dπ-π分別為3.57 Å以及4.83 Å,PTI2T-4C8其dπ-π則被導入之支鏈大幅拉大,故幾乎無法觀察到明顯訊號。(2) 在固定予體噻吩上之支鏈個數 (x) 後,逐漸增加噻吩個數 (n) 將會使得主鏈扭轉自由度增加、進而減少π-共軛長度而使得能隙增加。如PTI2T-2C8、PTI3T-2C8及PTI4T-2C8其Egsol分別為1.00、1.18以及1.25 eV,Egfilm則分別為0.87、1.14及1.20 eV。另外GIWAXS研究也指出PTI3T之層狀堆疊距離 (d(100)) 也較PTI2T及PTI4T系列寡共聚物來得大,這是由於予體內不同噻吩個數 (n) 將會使其主鏈擁有不同構形 (n = 2以及4時為中心對稱,n = 3 時則為軸對稱)。最後在結晶方向方面,我們發現支鏈會大幅影響了兩兩分子鏈之間堆疊,若同時配合不同主鏈曲度將會對其結晶排列方式產生影響:當主鏈以中心對稱構形 (n = 2或4) 以及低支鏈依附密度 (x = 0) 下,增強了寡共聚物站立基板能力與分子間π-π作用力,故結晶方向以側向為主;隨著支鏈依附密度增加 (x ≧ 2) 其側向分布將逐漸減少而轉換至面向。若主鏈以軸對稱 (n = 3) 使其以「鋸齒形」存在,則隨著支鏈依附密度 (x) 不同其結晶方向將有極大之變化。當支鏈依附密度低時 (x = 0) 其仍為側向結構,但一旦支鏈數目增加 (x = 2) 其結晶方向轉換為具極高規整性之面向排列;但更高之支鏈數目 (x = 4) 則破壞了此寡共聚物鏈堆疊,使得其成為一非晶質結構材料。在循環伏安儀分析中我們也發現了本系列寡共聚物具明顯氧化峰值,故其將可勝任做為一p型半導體材料。在熱性質分析中也發現其為一熱穩定性材料,部分材料甚至其熱裂解溫度高達390°C。
此研究結果成功地提供從分子設計的角度做出所欲結晶方向導電高分子之路徑,並預期其應用在適當光電元件中會有極佳表現。
Conducting polymers are important materials in the fabrication of optoelectronic devices. The orientation of the polymer crystalline is critical to achieve high charge carrier mobility and performance in the devices. In general, the edge-on orientation is preferred for utilities of organic field-effect transistors, and the face-on orientation is desired for applications in organic solar cells. However, the detail mechanisms behind the cause of favored crystal orientation of conducting polymers are not clearly understood currently. The systematic studies of molecular design and synthesis for the desired crystal orientation are relatively few present in the literatures. In this research, we design and synthesize eight different co-oligomers, poly(thienoisoindigo-alt-(xoctylthiophene)n, PTInT-xC8, where thienoisoindigo unit (TI) acting as an acceptor is conjugated with thiophene (T) as a donor; n is the number of thiophene in a donor segment, and xC8 denotes the number of n-octyl substituted on thiophenes in a repeat unit. We could tailor the crystal orientation by varying two parameters: (1) side-chain attachment density by changing the number of n-octyl substituents (x) on the thiophenes, and (2) the backbone curvature by changing the number of thiophene (n).
The co-oligomers were synthesized successfully via either Stille coupling reaction or direct arylation polycondensation, and were characterized by nuclear magnetic resonance spectroscopy (NMR) for chemical structures, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF) for molecular weights, grazing-incidence wide angle X-ray scattering (GIWAXS) for crystalline structures, ultraviolet-visible-near infrared absorption spectroscopy (UV-Vis-NIR) for optical properties and cyclic voltammetry (CV) for band gap determination, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) for thermal properties. The differences among 8 co-oligomers are also studied in details by modeling the molecules by the density functional theory (DFT) calclations. The results indicate that: (1) increasing the number of substituted n-octyl chains (x) on the donor segment of thiophenes while the number of thiophenes (n) is fixed, the polymer backbone will be twisted dramatically as shown by molecular modeling. From the absorption spectra, the relative absorption peak intensity of electrons excited from donor’s HOMO to donor’s LUMO (λ1) is increased while the one symbolized intramolecular transfer (λ2) is decreased. The GIWAXS results also indicate that the π-π stacking distances (dπ-π) in the direction of (010) increase. For example, the dπ-π of PTI2T-0C8 and PTI2T-2C8 are 3.57 Å and 4.83 Å, respectively; the π-π interaction of PTI2T-4C8 is weakened enough that no diffraction peaks could be defined. (2) Increasing the number of thiophene (n) on donor segment while fixing the number of substituted n-octyl chains (x) on thiophenes will distort the backbone due to the increasing freedom of torsion, which shortens the π-conjugation length, and the band gap is increased accordingly. For example, Egsol of PTI2T-2C8, PTI3T-2C8 and PTI4T-2C8 is 1.00, 1.18 and 1.25 eV, respectively; Egfilm is 0.87, 1.14 and 1.20 eV, respectively. The GIWAXS study shows the lamellar distances (d(100)) of PTI3T series are larger than those series of PTI2T and PTI4T. The results are due to the comformation differences between the odd and even number of thiophene (n) in donor segment on the backbone. The even number n gives a centrosymmetric structure whereas the odd number exhibits an axisymmetric configuration. Meanwhile, the steric hindrance of side-chain also influences the packing of polymer backbones. Thus, the centrosymmetric polymers (n = 2 or 4) exhibit the edge-on crystal orientation of long-range order due to the strong π-π interaction. Their orientation will be gradually changed to face-on orientation when the number of side-chains (x) on thiophenes equal to 2 or larger. The change of orientation is far more dramatic for axisymmetric co-oligomerss when the number of side-chains is changed due to the the nonlinear characteristic of backbone which are not suitable for standing on substrate. The edge-on packing is observed for co-oligomers (PTI3T-0C8) without side-chain attached on thiophenes. However, the packing orientation becomes well-ordered face-on with two side-chains added onto the donor segment of thiophenes, and amorphous structure is obtained with adding two more side-chains. The CV results also reveal that most of the PTInT could be used as a p-type semi-conductor materials, and part of the co-oligomers are quiet stable at high temperature with the decomposition temperature as high as 390°C.
The outcomes of this research provide pathways for designing and synthesizing conducting polymers with desired crystal orientation for specific optoelectronic device applications.
致謝 I
摘要 II
Abstract IV
圖目錄 XI
表目錄 XVIII
第一章 研究背景 1
1-1 予體-受體交替共軛導電高分子 1
1-2 電荷載子傳遞與結晶方向 5
1-3 受體選擇──醯亞胺/醯胺分子基團 7
1-4 噻吩並異靛藍素 8
1-5 從分子設計角度外尋找其它能夠提高元件效率的方法 9
第二章 文獻回顧 11
2-1 透過支鏈依附密度控制結晶方向 11
2-2 透過主鏈曲度控制結晶方向 21
2-3 實驗設計與理念 26
第三章 實驗方法與步驟 28
3-1 實驗用藥品 28
3-2 PTInT系列單體合成路徑圖與合成步驟 34
化合物 (1),3-octylthiophene 35
化合物 (2),trimethyl(4-octylthiophen-2-yl)stannane 37
圖 19 化合物 (2) 之1H NMR光譜。 37
化合物 (3),2-bromo-3-octylthiophene 38
化合物 (4),3,3''-dioctyl-2,2''-bithiophene 39
化合物 (5),7-(bromomethyl)pentadecane 41
化合物 (6),2-(2-hexyldecyl)isoindoline-1,3-dione 42
化合物 (7),2-hexyldecan-1-amine 43
化合物 (8),N-(2-hexyldecyl)thiophene-3-amine 44
化合物 (9),4-(2-hexyldecyl)-4H-thieno[3,2-b]pyrrole-5,6-dione 45
化合物 (10),(E)-4,4''-bis(2-hexyldecyl)-[6,6''-bithieno[3,2-b]pyrrolylidene]-5,5''(4H,4''H)-dione 46
化合物 (11),(E)-2,2''-dibromo-4,4''-bis(2-hexyldecyl)-[6,6''-bithieno[3,2-b]pyrrolylidene]-5,5''(4H,4''H)-dione 47
化合物 (12),(E)-4,4''-bis(2-hexyldecyl)-2,2''-bis(4-octylthiophen-2-yl)-[6,6''-bithieno[3,2-b]pyrrolylidene]-5,5''(4H,4''H)-dione 48
化合物 (13),(E)-2,2''-bis(5-bromo-4-octylthiophen-2-yl)-4,4''-bis(2-hexyldecyl)-[6,6''-bithieno[3,2-b]pyrrolylidene]-5,5''(4H,4''H)-dione 50
化合物 (14),2,5-bis(trimethylstannyl)thiophene 51
化合物 (15),3,4-dioctylthiophene 52
化合物 (16),3,3'',4,4''-tetraoctyl-2,2''-bithiophene 54
化合物 (17),2,2'':5''2''-terthiophene-5,5''-bis(trimethylstannane) 55
3-3 PTInT系列寡共聚物聚合步驟 56
PTI2T-0C8 58
PTI2T-2C8 58
PTI2T-4C8 58
PTI3T-0C8 59
PTI3T-2C8 59
PTI3T-4C8 60
PTI4T-2C8 60
PTI4T-4C8 61
3-4 分析PTInT所需儀器以及相關操作 62
PTInT系列單體之核磁共振儀樣品管製作與分析 63
PTInT系列基質輔助雷射脫附游離飛行時間式質譜儀樣品製作與分析 63
PTInT系列寡共聚物之密度泛含理論分子模擬分析計算 63
PTInT系列寡共聚物之低掠角廣角X光繞射儀試片製作與分析 64
PTInT系列寡共聚物之紫外光-可見光-遠紅外光吸收光譜儀溶液態及薄膜態樣品製作與分析 64
PTInT系列寡共聚物之循環伏安儀試片製作與分析 65
PTInT系列寡共聚物之熱重分析 65
PTInT系列寡共聚物之差示掃描量熱分析 66
第四章 實驗結果與討論 67
4-1 PTInT系列寡共聚物之單體與寡共聚物的合成概述與分子量鑑定 67
PTInT系列寡共聚物單體合成概述 67
PTInT系列寡共聚物聚合概述 70
PTInT系列寡共聚物分子量鑑定 73
4-2 PTInT系列寡共聚物之分子模擬計算 76
4-3 PTInT系列寡共聚物之薄膜形態分析 81
4-4 PTInT系列寡共聚物之光電性質分析 90
4-5 PTInT系列寡共聚物之循環伏特儀分析 97
4-6 PTInT系列寡共聚物之熱性質分析 100
PTInT系列寡共聚物TGA實驗結果與討論 100
PTInT系列寡共聚物DSC實驗結果與討論 102
第五章 結論 105
第六章 未來工作 107
第七章 參考資料 108
1Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications, 578-580 (1977).
2Ivory, D. M. et al. Highly conducting charge‐transfer complexes of poly(p‐phenylene). The Journal of Chemical Physics 71, 1506-1507 (1979).
3Kanazawa, K. K. et al. ''Organic metals'': polypyrrole, a stable synthetic ''metallic'' polymer. Journal of the Chemical Society, Chemical Communications, 854-855 (1979).
4Tourillon, G. & Garnier, F. New electrochemically generated organic conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 135, 173-178 (1982).
5Moonen, P. F., Yakimets, I. & Huskens, J. Fabrication of Transistors on Flexible Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies. Advanced Materials 24, 5526-5541 (2012).
6Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539-541 (1990).
7Kraft, A., Grimsdale, A. C. & Holmes, A. B. Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angewandte Chemie International Edition 37, 402-428 (1998).
8Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. Light-Emitting Polythiophenes. Advanced Materials 17, 2281-2305 (2005).
9Yang, Y. & Heeger, A. J. A new architecture for polymer transistors. Nature 372, 344-346 (1994).
10Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 280, 1741-1744 (1998).
11Babel, A. & Jenekhe, S. A. High Electron Mobility in Ladder Polymer Field-Effect Transistors. Journal of the American Chemical Society 125, 13656-13657 (2003).
12Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters 69, 4108-4110 (1996).
13Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498-500 (1995).
14Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789-1791 (1995).
15Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews 107, 1324-1338 (2007).
16Kitamura, C., Tanaka, S. & Yamashita, Y. Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units. Chemistry of Materials 8, 570-578 (1996).
17Zhou, H., Yang, L., Stoneking, S. & You, W. A Weak Donor−Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Interfaces 2, 1377-1383 (2010).
18Yuen, J. D. & Wudl, F. Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy & Environmental Science 6, 392-406 (2013).
19Balan, B. et al. Optical and electrical properties of dithienothiophene based conjugated polymers: medium donor vs. weak, medium, and strong acceptors. Polymer Chemistry 4, 2293-2303 (2013).
20Brocks, G. & Tol, A. Small Band Gap Semiconducting Polymers Made from Dye Molecules:  Polysquaraines. The Journal of Physical Chemistry 100, 1838-1846 (1996).
21Koster, L. J. A., Mihailetchi, V. D. & Blom, P. W. M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters 88, 093511 (2006).
22Halls, J. J. M. et al. Charge- and energy-transfer processes at polymer/polymer interfaces: A joint experimental and theoretical study. Physical Review B 60, 5721-5727 (1999).
23Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-Type Organic Semiconductors in Organic Electronics. Advanced Materials 22, 3876-3892 (2010).
24Holliday, S., Donaghey, J. E. & McCulloch, I. Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. Chemistry of Materials 26, 647-663 (2014).
25Anthopoulos, T. D., Anyfantis, G. C., Papavassiliou, G. C. & de Leeuw, D. M. Air-stable ambipolar organic transistors. Applied Physics Letters 90, 122105 (2007).
26Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685-688 (1999).
27Guo, X., Facchetti, A. & Marks, T. J. Imide- and Amide-Functionalized Polymer Semiconductors. Chemical Reviews 114, 8943-9021 (2014).
28Deng, P. & Zhang, Q. Recent developments on isoindigo-based conjugated polymers. Polymer Chemistry 5, 3298-3305 (2014).
29Mei, J., Graham, K. R., Stalder, R. & Reynolds, J. R. Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters 12, 660-663 (2010).
30Voronina, Y. K., Krivolapov, D. B., Bogdanov, A. V., Mironov, V. F. & Litvinov, I. A. An unusual conformation of 1,1''-dimethyl-isoindigo in crystals. Journal of Structural Chemistry 53, 413-416 (2012).
31Ma, Z. et al. Synthesis and characterization of benzodithiophene-isoindigo polymers for solar cells. Journal of Materials Chemistry 22, 2306-2314 (2012).
32Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H. & McCulloch, I. A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications 48, 3939-3941 (2012).
33McCulloch, I. et al. Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells. Accounts Chem Res 45, 714-722 (2012).
34Osaka, I. et al. Contrasting Effect of Alkylation on the Ordering Structure in Isomeric Naphthodithiophene-Based Polymers. Macromolecules 47, 3502-3510 (2014).
35Chang, J.-F. et al. Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials 16, 4772-4776 (2004).
36Zhang, F. et al. Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends. Advanced Functional Materials 16, 667-674 (2006).
37Yang, H. et al. Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors. Advanced Functional Materials 15, 671-676 (2005).
38Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6, 497-500 (2007).
39Lee, J. K. et al. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society 130, 3619-3623 (2008).
40Hoven, C. V. et al. Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives. Advanced Materials 22, E63-E66 (2010).
41Lou, S. J. et al. Effects of Additives on the Morphology of Solution Phase Aggregates Formed by Active Layer Components of High-Efficiency Organic Solar Cells. Journal of the American Chemical Society 133, 20661-20663 (2011).
42Tsao, H. N. et al. The Influence of Morphology on High-Performance Polymer Field-Effect Transistors. Advanced Materials 21, 209-212 (2009).
43Tseng, H.-R. et al. High Mobility Field Effect Transistors Based on Macroscopically Oriented Regioregular Copolymers. Nano Letters 12, 6353-6357 (2012).
44Soeda, J. et al. Highly Oriented Polymer Semiconductor Films Compressed at the Surface of Ionic Liquids for High-Performance Polymeric Organic Field-Effect Transistors. Advanced Materials 26, 6430-6435 (2014).
45Lee, M. J. et al. Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. Advanced Functional Materials 21, 932-940 (2011).
46Kline, R. J. et al. Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules 40, 7960-7965 (2007).
47Kline, R. J. et al. Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters 90, 062117 (2007).
48Zhang, X. et al. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society 133, 15073-15084 (2011).
49Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679-686 (2009).
50Rivnay, J. et al. Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer. Advanced Materials 22, 4359-4363 (2010).
51Bareman, J. P. & Klein, M. L. Collective tilt behavior in dense, substrate-supported monolayers of long-chain molecules: a molecular dynamics study. The Journal of Physical Chemistry 94, 5202-5205 (1990).
52Surin, M. et al. Molecule−Molecule versus Molecule−Substrate Interactions in the Assembly of Oligothiophenes at Surfaces. The Journal of Physical Chemistry B 110, 7898-7908 (2006).
53Coffey, D. C. & Ginger, D. S. Patterning Phase Separation in Polymer Films with Dip-Pen Nanolithography. Journal of the American Chemical Society 127, 4564-4565 (2005).
54Chen, M. S. et al. Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation. Journal of the American Chemical Society 135, 19229-19236 (2013).
55Brown, S. P. & Spiess, H. W. Advanced Solid-State NMR Methods for the Elucidation of Structure and Dynamics of Molecular, Macromolecular, and Supramolecular Systems. Chemical Reviews 101, 4125-4156 (2001).
56Collison, C. J., Rothberg, L. J., Treemaneekarn, V. & Li, Y. Conformational Effects on the Photophysics of Conjugated Polymers:  A Two Species Model for MEH−PPV Spectroscopy and Dynamics. Macromolecules 34, 2346-2352 (2001).
57Guo, X., Puniredd, S. R., Baumgarten, M., Pisula, W. & Müllen, K. Rational Design of Benzotrithiophene-Diketopyrrolopyrrole-Containing Donor-Acceptor Polymers for Improved Charge Carrier Transport. Advanced Materials 25, 5467-5472 (2013).
58Guo, J. et al. Structure, Dynamics, and Power Conversion Efficiency Correlations in a New Low Bandgap Polymer: PCBM Solar Cell. The Journal of Physical Chemistry B 114, 742-748 (2010).
59Piliego, C. et al. Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. Journal of the American Chemical Society 132, 7595-7597 (2010).
60Lee, W. et al. Semicrystalline D–A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices. Macromolecules 47 (2014).
61Ho, C.-C., Chen, C.-A., Chang, C.-Y., Darling, S. B. & Su, W.-F. Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. Journal of Materials Chemistry A 2, 8026-8032 (2014).
62Chen, M. S. et al. Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone Coplanarity. Chemistry of Materials 25, 4088-4096 (2013).
63Wang, E. et al. An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. Journal of the American Chemical Society 133, 14244-14247 (2011).
64Guo, X. et al. Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors. Journal of the American Chemical Society 133, 13685-13697 (2011).
65Ko, S. et al. 3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics. Journal of the American Chemical Society 133, 16722-16725 (2011).
66Speros, J. C. et al. Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(thienylene vinylenes). Macromolecules 46, 5184-5194 (2013).
67Morimoto, K., Nakae, T., Yamaoka, N., Dohi, T. & Kita, Y. Metal-Free Oxidative Coupling Reactions via σ-Iodonium Intermediates: The Efficient Synthesis of Bithiophenes Using Hypervalent Iodine Reagents. European Journal of Organic Chemistry 2011, 6326-6334 (2011).
68Cho, C.-H. et al. Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chemical Communications 47, 3577-3579 (2011).
69Van Pruissen, G. W. P., Gholamrezaie, F., Wienk, M. M. & Janssen, R. A. J. Synthesis and properties of small band gap thienoisoindigo based conjugated polymers. Journal of Materials Chemistry 22, 20387-20393 (2012).
70Kuwabara, J. et al. Direct arylation polycondensation for the synthesis of bithiophene-based alternating copolymers. Polymer Chemistry 4, 947-953 (2013).
71Stille, J. K. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. Angewandte Chemie International Edition in English 25, 508-524 (1986).
72Mercier, L. G. & Leclerc, M. Direct (Hetero)Arylation: A New Tool for Polymer Chemists. Accounts Chem Res 46, 1597-1605 (2013).
73Ackermann, L., Vicente, R. & Kapdi, A. R. Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by CH Bond Cleavage. Angewandte Chemie International Edition 48, 9792-9826 (2009).
74David, L. & Keith, F. Overview of the Mechanistic Work on the Concerted Metallation–Deprotonation Pathway. Chemistry Letters 39, 1118-1126 (2010).
75Bellina, F. & Rossi, R. Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C−H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews 110, 1082-1146 (2010).
76Liégault, B., Lapointe, D., Caron, L., Vlassova, A. & Fagnou, K. Establishment of Broadly Applicable Reaction Conditions for the Palladium-Catalyzed Direct Arylation of Heteroatom-Containing Aromatic Compounds. The Journal of Organic Chemistry 74, 1826-1834 (2009).
77Fujinami, Y., Kuwabara, J., Lu, W., Hayashi, H. & Kanbara, T. Synthesis of Thiophene- and Bithiophene-Based Alternating Copolymers via Pd-Catalyzed Direct C–H Arylation. ACS Macro Letters 1, 67-70 (2012).
78Coffin, R. C., Peet, J., Rogers, J. & Bazan, G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1, 657-661 (2009).
79Rivnay, J., Mannsfeld, S. C. B., Miller, C. E., Salleo, A. & Toney, M. F. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chemical Reviews 112, 5488-5519 (2012).
80Lei, T. et al. Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors: Design Strategy and Impact of Polymer Symmetry and Backbone Curvature. Chemistry of Materials 24, 1762-1770 (2012).
81Beaujuge, P. M., Amb, C. M. & Reynolds, J. R. Spectral Engineering in π-Conjugated Polymers with Intramolecular Donor−Acceptor Interactions. Accounts Chem Res 43, 1396-1407 (2010).
82Lan, S.-C., Chang, C.-K., Wang, Y.-C. & Wei, K.-H. Side-Chain-Bulk Effects on the Molecular Packing and Photovoltaic Performance of Benzotrithiophene–Benzooxadiazole Conjugated Copolymers. ChemPhysChem 16, 1268-1274 (2015).
83Huang, W. et al. Molecular Engineering on Conjugated Side Chain for Polymer Solar Cells with Improved Efficiency and Accessibility. Chemistry of Materials 28, 5887-5895 (2016).
84Fauvell, T. J. et al. Photophysical and Morphological Implications of Single-Strand Conjugated Polymer Folding in Solution. Chemistry of Materials 28, 2814-2822 (2016).
85Hellstrom, S., Zhang, F., Inganas, O. & Andersson, M. R. Structure-property relationships of small bandgap conjugated polymers for solar cells. Dalton Transactions, 10032-10039 (2009).
86Kim, Y., Hong, J., Oh, J. H. & Yang, C. Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units. Chemistry of Materials 25, 3251-3259 (2013).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊