|
1Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications, 578-580 (1977). 2Ivory, D. M. et al. Highly conducting charge‐transfer complexes of poly(p‐phenylene). The Journal of Chemical Physics 71, 1506-1507 (1979). 3Kanazawa, K. K. et al. ''Organic metals'': polypyrrole, a stable synthetic ''metallic'' polymer. Journal of the Chemical Society, Chemical Communications, 854-855 (1979). 4Tourillon, G. & Garnier, F. New electrochemically generated organic conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 135, 173-178 (1982). 5Moonen, P. F., Yakimets, I. & Huskens, J. Fabrication of Transistors on Flexible Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies. Advanced Materials 24, 5526-5541 (2012). 6Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539-541 (1990). 7Kraft, A., Grimsdale, A. C. & Holmes, A. B. Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angewandte Chemie International Edition 37, 402-428 (1998). 8Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. Light-Emitting Polythiophenes. Advanced Materials 17, 2281-2305 (2005). 9Yang, Y. & Heeger, A. J. A new architecture for polymer transistors. Nature 372, 344-346 (1994). 10Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 280, 1741-1744 (1998). 11Babel, A. & Jenekhe, S. A. High Electron Mobility in Ladder Polymer Field-Effect Transistors. Journal of the American Chemical Society 125, 13656-13657 (2003). 12Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters 69, 4108-4110 (1996). 13Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498-500 (1995). 14Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789-1791 (1995). 15Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews 107, 1324-1338 (2007). 16Kitamura, C., Tanaka, S. & Yamashita, Y. Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units. Chemistry of Materials 8, 570-578 (1996). 17Zhou, H., Yang, L., Stoneking, S. & You, W. A Weak Donor−Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Interfaces 2, 1377-1383 (2010). 18Yuen, J. D. & Wudl, F. Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy & Environmental Science 6, 392-406 (2013). 19Balan, B. et al. Optical and electrical properties of dithienothiophene based conjugated polymers: medium donor vs. weak, medium, and strong acceptors. Polymer Chemistry 4, 2293-2303 (2013). 20Brocks, G. & Tol, A. Small Band Gap Semiconducting Polymers Made from Dye Molecules: Polysquaraines. The Journal of Physical Chemistry 100, 1838-1846 (1996). 21Koster, L. J. A., Mihailetchi, V. D. & Blom, P. W. M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters 88, 093511 (2006). 22Halls, J. J. M. et al. Charge- and energy-transfer processes at polymer/polymer interfaces: A joint experimental and theoretical study. Physical Review B 60, 5721-5727 (1999). 23Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-Type Organic Semiconductors in Organic Electronics. Advanced Materials 22, 3876-3892 (2010). 24Holliday, S., Donaghey, J. E. & McCulloch, I. Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. Chemistry of Materials 26, 647-663 (2014). 25Anthopoulos, T. D., Anyfantis, G. C., Papavassiliou, G. C. & de Leeuw, D. M. Air-stable ambipolar organic transistors. Applied Physics Letters 90, 122105 (2007). 26Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685-688 (1999). 27Guo, X., Facchetti, A. & Marks, T. J. Imide- and Amide-Functionalized Polymer Semiconductors. Chemical Reviews 114, 8943-9021 (2014). 28Deng, P. & Zhang, Q. Recent developments on isoindigo-based conjugated polymers. Polymer Chemistry 5, 3298-3305 (2014). 29Mei, J., Graham, K. R., Stalder, R. & Reynolds, J. R. Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters 12, 660-663 (2010). 30Voronina, Y. K., Krivolapov, D. B., Bogdanov, A. V., Mironov, V. F. & Litvinov, I. A. An unusual conformation of 1,1''-dimethyl-isoindigo in crystals. Journal of Structural Chemistry 53, 413-416 (2012). 31Ma, Z. et al. Synthesis and characterization of benzodithiophene-isoindigo polymers for solar cells. Journal of Materials Chemistry 22, 2306-2314 (2012). 32Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H. & McCulloch, I. A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications 48, 3939-3941 (2012). 33McCulloch, I. et al. Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells. Accounts Chem Res 45, 714-722 (2012). 34Osaka, I. et al. Contrasting Effect of Alkylation on the Ordering Structure in Isomeric Naphthodithiophene-Based Polymers. Macromolecules 47, 3502-3510 (2014). 35Chang, J.-F. et al. Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials 16, 4772-4776 (2004). 36Zhang, F. et al. Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends. Advanced Functional Materials 16, 667-674 (2006). 37Yang, H. et al. Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors. Advanced Functional Materials 15, 671-676 (2005). 38Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6, 497-500 (2007). 39Lee, J. K. et al. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society 130, 3619-3623 (2008). 40Hoven, C. V. et al. Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives. Advanced Materials 22, E63-E66 (2010). 41Lou, S. J. et al. Effects of Additives on the Morphology of Solution Phase Aggregates Formed by Active Layer Components of High-Efficiency Organic Solar Cells. Journal of the American Chemical Society 133, 20661-20663 (2011). 42Tsao, H. N. et al. The Influence of Morphology on High-Performance Polymer Field-Effect Transistors. Advanced Materials 21, 209-212 (2009). 43Tseng, H.-R. et al. High Mobility Field Effect Transistors Based on Macroscopically Oriented Regioregular Copolymers. Nano Letters 12, 6353-6357 (2012). 44Soeda, J. et al. Highly Oriented Polymer Semiconductor Films Compressed at the Surface of Ionic Liquids for High-Performance Polymeric Organic Field-Effect Transistors. Advanced Materials 26, 6430-6435 (2014). 45Lee, M. J. et al. Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. Advanced Functional Materials 21, 932-940 (2011). 46Kline, R. J. et al. Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules 40, 7960-7965 (2007). 47Kline, R. J. et al. Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters 90, 062117 (2007). 48Zhang, X. et al. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society 133, 15073-15084 (2011). 49Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679-686 (2009). 50Rivnay, J. et al. Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer. Advanced Materials 22, 4359-4363 (2010). 51Bareman, J. P. & Klein, M. L. Collective tilt behavior in dense, substrate-supported monolayers of long-chain molecules: a molecular dynamics study. The Journal of Physical Chemistry 94, 5202-5205 (1990). 52Surin, M. et al. Molecule−Molecule versus Molecule−Substrate Interactions in the Assembly of Oligothiophenes at Surfaces. The Journal of Physical Chemistry B 110, 7898-7908 (2006). 53Coffey, D. C. & Ginger, D. S. Patterning Phase Separation in Polymer Films with Dip-Pen Nanolithography. Journal of the American Chemical Society 127, 4564-4565 (2005). 54Chen, M. S. et al. Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation. Journal of the American Chemical Society 135, 19229-19236 (2013). 55Brown, S. P. & Spiess, H. W. Advanced Solid-State NMR Methods for the Elucidation of Structure and Dynamics of Molecular, Macromolecular, and Supramolecular Systems. Chemical Reviews 101, 4125-4156 (2001). 56Collison, C. J., Rothberg, L. J., Treemaneekarn, V. & Li, Y. Conformational Effects on the Photophysics of Conjugated Polymers: A Two Species Model for MEH−PPV Spectroscopy and Dynamics. Macromolecules 34, 2346-2352 (2001). 57Guo, X., Puniredd, S. R., Baumgarten, M., Pisula, W. & Müllen, K. Rational Design of Benzotrithiophene-Diketopyrrolopyrrole-Containing Donor-Acceptor Polymers for Improved Charge Carrier Transport. Advanced Materials 25, 5467-5472 (2013). 58Guo, J. et al. Structure, Dynamics, and Power Conversion Efficiency Correlations in a New Low Bandgap Polymer: PCBM Solar Cell. The Journal of Physical Chemistry B 114, 742-748 (2010). 59Piliego, C. et al. Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. Journal of the American Chemical Society 132, 7595-7597 (2010). 60Lee, W. et al. Semicrystalline D–A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices. Macromolecules 47 (2014). 61Ho, C.-C., Chen, C.-A., Chang, C.-Y., Darling, S. B. & Su, W.-F. Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. Journal of Materials Chemistry A 2, 8026-8032 (2014). 62Chen, M. S. et al. Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone Coplanarity. Chemistry of Materials 25, 4088-4096 (2013). 63Wang, E. et al. An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. Journal of the American Chemical Society 133, 14244-14247 (2011). 64Guo, X. et al. Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors. Journal of the American Chemical Society 133, 13685-13697 (2011). 65Ko, S. et al. 3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics. Journal of the American Chemical Society 133, 16722-16725 (2011). 66Speros, J. C. et al. Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(thienylene vinylenes). Macromolecules 46, 5184-5194 (2013). 67Morimoto, K., Nakae, T., Yamaoka, N., Dohi, T. & Kita, Y. Metal-Free Oxidative Coupling Reactions via σ-Iodonium Intermediates: The Efficient Synthesis of Bithiophenes Using Hypervalent Iodine Reagents. European Journal of Organic Chemistry 2011, 6326-6334 (2011). 68Cho, C.-H. et al. Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chemical Communications 47, 3577-3579 (2011). 69Van Pruissen, G. W. P., Gholamrezaie, F., Wienk, M. M. & Janssen, R. A. J. Synthesis and properties of small band gap thienoisoindigo based conjugated polymers. Journal of Materials Chemistry 22, 20387-20393 (2012). 70Kuwabara, J. et al. Direct arylation polycondensation for the synthesis of bithiophene-based alternating copolymers. Polymer Chemistry 4, 947-953 (2013). 71Stille, J. K. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. Angewandte Chemie International Edition in English 25, 508-524 (1986). 72Mercier, L. G. & Leclerc, M. Direct (Hetero)Arylation: A New Tool for Polymer Chemists. Accounts Chem Res 46, 1597-1605 (2013). 73Ackermann, L., Vicente, R. & Kapdi, A. R. Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by CH Bond Cleavage. Angewandte Chemie International Edition 48, 9792-9826 (2009). 74David, L. & Keith, F. Overview of the Mechanistic Work on the Concerted Metallation–Deprotonation Pathway. Chemistry Letters 39, 1118-1126 (2010). 75Bellina, F. & Rossi, R. Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C−H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews 110, 1082-1146 (2010). 76Liégault, B., Lapointe, D., Caron, L., Vlassova, A. & Fagnou, K. Establishment of Broadly Applicable Reaction Conditions for the Palladium-Catalyzed Direct Arylation of Heteroatom-Containing Aromatic Compounds. The Journal of Organic Chemistry 74, 1826-1834 (2009). 77Fujinami, Y., Kuwabara, J., Lu, W., Hayashi, H. & Kanbara, T. Synthesis of Thiophene- and Bithiophene-Based Alternating Copolymers via Pd-Catalyzed Direct C–H Arylation. ACS Macro Letters 1, 67-70 (2012). 78Coffin, R. C., Peet, J., Rogers, J. & Bazan, G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1, 657-661 (2009). 79Rivnay, J., Mannsfeld, S. C. B., Miller, C. E., Salleo, A. & Toney, M. F. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chemical Reviews 112, 5488-5519 (2012). 80Lei, T. et al. Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors: Design Strategy and Impact of Polymer Symmetry and Backbone Curvature. Chemistry of Materials 24, 1762-1770 (2012). 81Beaujuge, P. M., Amb, C. M. & Reynolds, J. R. Spectral Engineering in π-Conjugated Polymers with Intramolecular Donor−Acceptor Interactions. Accounts Chem Res 43, 1396-1407 (2010). 82Lan, S.-C., Chang, C.-K., Wang, Y.-C. & Wei, K.-H. Side-Chain-Bulk Effects on the Molecular Packing and Photovoltaic Performance of Benzotrithiophene–Benzooxadiazole Conjugated Copolymers. ChemPhysChem 16, 1268-1274 (2015). 83Huang, W. et al. Molecular Engineering on Conjugated Side Chain for Polymer Solar Cells with Improved Efficiency and Accessibility. Chemistry of Materials 28, 5887-5895 (2016). 84Fauvell, T. J. et al. Photophysical and Morphological Implications of Single-Strand Conjugated Polymer Folding in Solution. Chemistry of Materials 28, 2814-2822 (2016). 85Hellstrom, S., Zhang, F., Inganas, O. & Andersson, M. R. Structure-property relationships of small bandgap conjugated polymers for solar cells. Dalton Transactions, 10032-10039 (2009). 86Kim, Y., Hong, J., Oh, J. H. & Yang, C. Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units. Chemistry of Materials 25, 3251-3259 (2013).
|