跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡祐瑋
研究生(外文):You-Wei Hu
論文名稱:高強度鋼梁翼板偏心與柱翼板厚度對電熱熔渣焊破壞效應
論文名稱(外文):Effects of SM570M-CHW steel beam flange eccentricity and column flange thickness on electronic slag welding failure
指導教授:蔡克銓蔡克銓引用關係
口試委員:陳誠直林克強
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:136
中文關鍵詞:鋼箱型柱鋼梁柱接頭電熱熔渣焊SM570M-CHW高強度鋼材有限元素模型鋼材破裂預測模型圓周刻痕拉伸試驗
相關次數:
  • 被引用被引用:3
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
箱型柱因其雙強軸特性,在台灣鋼結構中應用非常普遍,為了將梁端彎矩順利傳入柱構件,箱型柱中與梁翼相對應之高程須置入內橫隔板,內橫隔板與箱型柱之焊接工法通常採用電熱熔渣焊(electro-slag welding, ESW) 。而為了解決柱構件斷面過大的問題,高強度鋼材SM570M-CHW的應用也日漸普及。本研究利用SM570M-CHW高強度鋼材,探討箱型柱中電熱熔渣焊受梁翼與橫隔板高程偏心及柱翼相對厚度效應下的耐震行為,並採用Kanvinde與Deierlein在2004年提出的破壞預測模型(α Model與α Cyclic) ,採相同梁翼厚但以不同「柱翼板厚度」與「梁翼板偏心」作為主要研究參數,探討ESW是否可能破裂以及破裂時機。
本研究進行三組ESW元件單向拉伸試驗與兩組實尺寸梁柱接頭反覆載重試驗探討柱翼板厚度與梁翼板偏心對於ESW破壞的效應,試驗結果顯示:若僅受36mm厚梁翼單向拉力作用,ESW能夠在偏心量超過一倍柱翼板厚度25mm的情況下達到27mm,仍未於ESW處發生破裂,此結果與過往研究結論偏心量不能超過一倍柱翼板厚度不同,主因為本研究內橫隔板厚36mm較以往研究厚,使ESW熔幅範圍增大進而提升耐震性能。實尺寸梁柱接頭反覆載重試驗中則證明當柱翼板厚度由25mm提升至45mm時,ESW由原先3%層間位移角發生破壞改善至層間位移角達5%尚未發生破壞。
為使用破壞預測模型,本研究利用有限元素軟體ABAQUS進行有限元素模型分析,建立ESW元件與圓周刻痕試棒(CNT)分析模型獲得α Model材料參數α並進行ESW破裂預測,結果顯示ESW周圍關鍵元素皆不會發生破裂,與真實實驗情況一致。亦建立實尺寸梁柱接頭有限元素分析模型,觀測關鍵區域應力集中現象與尖端開口位移,並配合α Cyclic破壞預測模型討論反覆載重作用下ESW破壞時機,結果顯示當柱翼板厚度由25mm增厚至45mm時,應力集中現象明顯減緩,且尖端開口位移下降約1/3倍,α Cyclic亦顯示以SN490材料參數能夠預測出與試驗結果相近的破裂時機。
Steel box columns are widely used in seismic steel building structures in Taiwan. In order to effectively transfer the beam-end moment to the column, diaphragm plates are welded inside the box column at the same elevations of the welded beam flanges. Electro-slag welding (ESW) procedure is common applied to attach the diaphragm plates to the column. Recently, SM570M-CHW grade high strength steel is also widely adopted in steel building structure in order to reduce the member sizes. In this study, two full-scaled welded SM570M-CHW steel beam-to-column moment connection specimens and three ESW component specimens were fabricated and tested. The key design parameters of these specimens include column flange thickness, beam flange eccentricity with respect to the diaphragm plate. This study investigates the applicability of stress modified critical stress (SMCS) and Degraded Significant Plastic Strain models (DSPS) in predicting the crack initiation fracture of the diaphragm-to-column ESW joint. The ESW component specimens were subjected to monotonic tensile loads, while the welded beam-to-column connection specimens were subjected to cyclically increasing displacement in order to investigate the effects of beam flange eccentricity and column flange thickness on the ESW fractures. Test results show that when the ESW was subjected to monotonic tension only, it remained intact even when the beam flange 27mm eccentricity was greater than the column flange thickness 25mm. This result is inconsistent with the findings from a former research, which suggested that the beam flange eccentricity should not be larger than the column flange thickness. This should be attributed to that a 36mm thicker diaphragm plate than the 25mm column flange has provided enough chamber for a large ESW fusion zone to develop. Thus, it has allowed the connection to sustain the 27mm beam flange eccentricity. Cyclic tests results of the welded beam-to-column moment connections showed that the connection with the 25mm column flange failed at the 3% IDR cycle, while the specimen with the 45mm column flange went through 5% IDR cycle without failure.
In order to compute the material parameter, α in the SMCS models, this study constructed finite element analysis (FEA) models to analyze the responses of ESW components and the circumferential notched test (CNT) specimens made from the ESW components. The FEA results confirm that all of key elements in the heat affected zone surrounding the ESW would not fail, which is consistent with the test results. This study also conducted the FEA on the welded beam–to-column moment connection models. The DSPS model parameter of SN490B steel computed in a previous research was adopted. The effects of column flange thickness on the EWS stress concentration and crack tip opening displacement (CTOD) under the cyclic loading are investigated. The FEA results show that when the column flange thickness increases from 25mm to 45mm, the stress concentrations are reduced and CTOD is decreased by 3 times. The comparison between the test and FEA results suggest that the DSPS model incorporated with the material toughness parameters obtained from SN490B steel can satisfactorily predict the fracture responses of the ESW diaphragm-to-column joint.
致謝 i
摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
照片目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 2
1.3 論文架構 2
第二章 文獻回顧 4
2.1電熱熔渣焊介紹與研究 4
2.1.1 電熱熔渣焊介紹 4
2.1.2 林克強(2008) 4
2.1.3 Chen et al. (2009) 5
2.1.4 鄭元良(2011) 5
2.2 破壞預測模型理論與應用 6
2.2.1 Kanvinde and Deierlein(2004) 6
2.2.2 吳忠哲(2016) 11
2.2.3 覃志光(2017) 12
第三章 ESW元件單向拉伸試驗 13
3.1 概述 13
3.2 ESW元件試體介紹 13
3.2.1 試體設計 13
3.2.2 試體製作 14
3.3 量測計畫 15
3.4 試驗過程 16
3.5 試驗結果與討論 17
第四章 ESW元件破壞預測模擬 19
4.1 ESW元件切割與加工計畫 19
4.2 材料試驗 20
4.2.1 金屬拉伸試驗(Coupon Tensile Test) 20
4.2.2 圓周刻痕拉伸試驗(Circumferentially Notched Tensile) 20
4.3 破壞模型介紹與應用方法 21
4.3.1 α Model 21
4.3.2 圓周刻痕(CNT)拉伸試驗應用 22
4.4 ESW元件有限元素模型 25
4.5 破壞預測結果與討論 27
第五章 實尺寸鋼梁接箱型柱接頭反覆載重試驗 29
5.1 概述 29
5.2 實尺寸鋼梁接箱型柱試體介紹 29
5.2.1 試體設計 29
5.2.2 試體製作與組裝 30
5.3 量測計畫 31
5.4 試驗過程 32
5.5 梁柱接頭有限元素模型介紹 35
5.6 Α CYCLIC 36
5.7 模擬分析及試驗結果比較與討論 37
第六章 結論與建議 39
6.1 研究結論 39
6.2 施工建議 40
參考文獻 41
附錄一 BC25-36試體檢驗報告書 131
附錄二 BC45-36試體檢驗報告書 134
1.AISC (2005), “Seismic Provisions for Structural Steel Buildings,” American Institute of Steel Construction.
2.AISC (2005), “Specification for Structural Steel Buildings,” American Institute of Steel Construction.
3.American Welding Society (1992), D1.1-1992, Structural Welding Code.
4.A.M. Kanvinde, and G.G. Deierlein (2006), “Void Growth Model and Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels.” Journal of Engineering Mechanics, ASCE/June 2006/1907.
5.A.M. Kanvinde, and G.G. Deierlein (2007), “Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels due to Ultra Low Cycle Fatigue.” Journal of Engineering Mechanics, ASCE/June 2007/701.
6.A.M. Kanvinde, and G.G. Deierlein (2004), “Micromechanical Simulation of Earthquake-Induced Fracture in Steel Structures.” Report No. BLUME-145, Stanford, California: The John A. Blume Earthquake Engineering Center, July.
7.A.T. Myers, G.G. Deierlein, and A.M. Kanvinde (2009), “Testing and Probabilistic Simulation of Ductile Fracture Initiation in Structural Steel Components and Weldments.” Report No. BLUME-170, Stanford, California: The John A. Blume Earthquake Engineering Center, May.
8.B.W. Schafer, R.P. Ojdrovic, M.S. Zarghamee (2000), “Triaxiality and Fracture of Steel Moment Connections.” Journal of Structural Engineering, ASCE/October 2000/1131.
9.C.C. Chen, C.L. Lai, and K.C. Lin (2009), “Finite Element Analysis of Electro-Slag Welding for Diaphragms in Steel Box Column.” Proceedings, The Eleventh Taiwan-Korea-Japan Joint Seminar on Earthquake Engineering for Building Structures SEEBUS 2009, Kyoto, Japan, December 3-5, 2009.
10.FEMA (2000), “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings,” FEMA 350, Federal Emergency Management Agency, Washington, DC.
11.J.R. Rice and D.M. Tracey (1969), “On the Ductile Enlargement of Voids in Triaxial Stress Fields” J Mechanics Physics Solids, 17(3), 201-217.
12.J.W. Hancock and D.K. Brown (1983), ”On the Role of Strain and Stress State in Ductile Failure.” J. Mech. Phys. Solids Vol. 31, No. 1,pp. 1-24, 1983
13.Kapil Khandelwal and Sherif El-Tawil (2007), “Collapse Behavior of Steel Special Moment Resisting Frame Connections.” Journal of Structural Engineering, ASCE/May 2007/646.
14.K.C. Tsai, K.C. Lin, S.J. Juang, C.H. Li, and C.H. Lin (2015), “Research and Practice on Seismic Design of Welded Steel Beam-to-Box Column Moment Connections in Taiwan.” Proceedings, The Third Announcement of Symposium on Future of Development of Seismic Design, Hong Kong, February 13, 2015.
15.Victoria R. Wigle and Larry A.Fahnestock (2010), “Buckling-restrained brace frame connection performance.” Journal of Constructional Steel Research 66 (2010), 65-74.
16.Y.H. Song, Takumi Ishii, Yukihiro Harada, and Koji Morita (2011), “Study on fracture behavior of electro-slag welded joints in beam-to-built-up box column connection.” Proceedings, The 6th International Symposium on Steel Structures, November 3-5, 2011, Seoul, Korea.
17.Yongjiu Shi, Jun Xiong, Yuanqing Wang, “Experimental Study on Damage Behavior of the Beam-to-Column Connection.” Doctoral Dissertation, Department of Civil Engineering, Tsinghua University, Beijing, 100084, China.
18.張智星 (2004),「MATLAB 程式設計入門篇」,清蔚科技與鈦思科技共同出版。
19.吳家慶 (2005),「削切蓋板鋼骨梁柱接頭之耐震行為研究」,國立交通大學土木工程學系,碩士論文,周中哲教授指導。
20.內政部營建署 (2007),「鋼結構建築物鋼結構設計技術規範-鋼結構極限設計規範與解說」。
21.內政部營建署 (2007),「鋼構造建築物鋼結構施工規範」。
22.賴建霖 (2007),「鋼骨箱型柱內橫隔板電熱熔渣焊之有限元素分析」,國立交通大學土木工程學系,碩士論文,陳誠直教授指導。
23.林克強、莊勝智、張福全、張柏彥 (2008),「台灣典型鋼梁與箱型柱採梁翼切削或梁翼加蓋板抗彎接頭之破壞模式」,鋼結構耐震設計與分析研討會論文集,國家地震工程研究中心,研究報告NCREE-08-037,台南。
24.鄭元良、李台光、蔡克銓、汪家銘、林克強、莊勝智 (2011),「鋼骨梁柱接頭橫隔板耐震性能研究」,國家地震工程研究中心,內政部建築研究所委託研究報告。
25.謝欣倫 (2012),「鋼梁與箱型柱接合內橫隔板耐震設計研究」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
26.陳正平 (2012),「鋼梁接頭扇形孔之設計與施工介紹」,技師報No.804,第8頁。
27.Dassault Systemes Simulia Corp. (2013),「最新Abaqus實務入門」,第一版,全華圖書股份有限公司,台北。
28.吳忠哲 (2016), 「鋼梁接箱型柱之內橫隔斷裂試驗與有限元素模型分析研究」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
29.覃志光 (2017), 「電熱熔渣焊及梁翼板偏心對SM570M-CHW鋼梁柱接頭耐震性能影響」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊