跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 08:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪學程
研究生(外文):Hsueh-Cheng Hung
論文名稱:聚焦式指叉電極角度對彎曲平板波元件特性之影響
論文名稱(外文):The Influence of the Angle of Focused Interdigital Transducers on the Characteristics of Flexural Plate-wave Device
指導教授:黃義佑
指導教授(外文):I-Yu Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:延遲線長度聚焦式指叉電極插入損耗彎曲平板波微機電系統
外文關鍵詞:Focused Interdigital TransducersInsertion LossFlexural Plate WaveDelay Line GapMicro-electro-mechanical Systems
相關次數:
  • 被引用被引用:4
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
彎曲平板波元件因具有高質量感測靈敏度、低傳播速度與低操作頻率等優點,因此非常適合應用於液態環境中進行生物或化學感測,然而傳統彎曲平板波元件高插入損耗以及因矽薄板厚度不易精確控制而導致製程良率低之缺點,限制了其發展性。為了改善上述之缺點,本論文採用聚焦式指叉電極與矽溝槽反射柵極結構之設計,並探討不同角度(30°、60°、90°、120°、150°)之聚焦式指叉電極與不同延遲線長度(250 μm、500 μm)的變化對彎曲平板波元件特性之影響。
本論文運用微機電系統技術來製作彎曲平板波元件,主要製程步驟包含七次薄膜沉積與五次黃光微影製程,另外為了精準控制彎曲平板波元件感測薄板的厚度以改善製程良率,在進行背部矽腔體之製作上採用兩階段KOH非等向性濕式蝕刻製程。
根據量測結果顯示,在延遲線長度為250 μm且聚焦式指叉電極角度為30°之彎曲平板波元件具有最低之插入損耗(-35.63 dB),最後,本論文以最佳化指叉電極設計之彎曲平板波元件進行微型感測元件之製作,當元件背部矽空腔分別蒸鍍沉積五種不同厚度之鋁金屬,可量得其固態質量感測靈敏度與線性度R2分別為50.94 cm2/g與0.993。
A Flexural plate-wave (FPW) device is more suitable for being used in liquid-sensing applications due to its high mass sensitivity, lower phase velocity and lower operation frequency. However, the high insertion loss and low fabrication yield of conventional FPW device limit its application. To improve the above shortcomings, the design of focused interdigital transducers (FIDT) and silicon-grooved reflective grating structure (RGS) are adopted in this thesis. The Influence of different angle (30°, 60°, 90°,120° and 150°) of FIDT and different length (250 μm and 500 μm) of delay line gap (DLG) on the characteristics of FPW device are investigated.
This research utilizes micro-electro-mechanical systems (MEMS) technique to develop the low insertion-loss FPW device and the main fabrication steps include seven thin-film deposition and four photolithography processes. To accurately control the thickness of the silicon thin-plate and substantially improve the fabrication yield of FPW transducers, a two-step anisotropic wet etching process was developed.
According to the measure results, the proposed FPW device with 250 μm DLG and 30° FIDT has the lowest insertion loss (-35.63 dB). Finally, under the optimized specifications, the FPW-based microsensor demonstrates a high mass sensitivity (50.94 cm2/g) and high sensing linearity (R2 = 0.993).
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.1.1 微型聲波感測器簡介 2
1.1.2 FPW感測器發展與設計沿革 8
1.2 論文架構 13
第二章 彎曲平板波元件原理介紹 14
2.1 壓電效應簡介與壓電薄膜選擇 14
2.1.1 壓電效應 14
2.1.2 壓電薄膜 15
2.1.3 氧化鋅壓電薄膜晶格結構與特性 16
2.2 指叉式電極之幾何與作用 18
2.2.1 指叉式電極之介紹 18
2.2.2 聚焦式指叉電極之介紹 20
2.2.3 插入損耗 21
2.3 反射柵極結構理論 22
2.4 反射柵極與指叉式電極之間距離之關係 24
2.5 FPW元件質量感測之理論推導 26
第三章 聚焦式IDT電極FPW感測器之設計與製作 28
3.1不同角度之IDT電極光罩佈局設計 28
3.2 聚焦式指叉電極彎曲平板波感測器製程整合 30
第四章 實驗結果與討論 46
4.1 氧化鋅壓電薄膜之材料特性 46
4.2 彎曲平板波元件特性量測結果與分析 49
4.2.1 不同角度之聚焦式指叉電極對彎曲平板波元件之特性影響 49
4.2.2 不同延遲線長度對彎曲平板波元件之特性影響 51
4.3 彎曲平板波元件撓曲現象 53
4.4 彎曲平板波固態質量感測器特性分析 56
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 63
[1]Y. Q. Fu, J. K. Luo, N. T. Nguyen, A. J. Walton, A. J. Flewitt, X. T Zu, Y. Li, G. McHale, A. Matthews, E. Iborra, H. Du and W. I. Milne, “Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications,” Prog. Mater. Sci. 89, 31-91 (2017).
[2]H. Wu, G. Zhao, H. Zu, James H.-C. Wang and Q.-M. Wang, “Aging-related viscoelasticity variation of tendon stem cells (TSCs) characterized by quartz thickness shear mode (TSM) resonators,” Sens. actuators. B Chem. 210, 369-380 (2015).
[3]L. Reyleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc. S1-17, 4-11 (1885).
[4]M. I. Rocha-Gaso, C. March-Iborra, A. Montoya-Baides and A. Arnau-Vives, “Surface generated acoustic wave biosensors for the detection of pathogens,” Sensors 9, 5740–5769 (2009).
[5]D. W. Galipeau, P. R. Story, K. A. Vetelino and R. D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Mater. Struct. 6, 658-667 (1997).
[6]D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellars and H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physicochemical Application, Academic Press: Salt Lake, UT, USA (1996).
[7]J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, Microsensors MEMS and smart devices, John Wiely & Sons, Inc., New York, USA (2001).
[8]J. Devkota, P. R. Ohodnicki and D. W. Greve, “SAW sensors for chemical vapors and gases,” Sensors 17, 801 (2017).
[9]M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics 36, 7-14 (1998).
[10]M. E. Motamedi and R. M. White, Acoustic Sensor in Semiconductor Sensor, John Wiely & Sons, Inc., New York, USA (1994).
[11]C.-Y. Lin, I.-Y. Huang and J.-W. Lan, “Improvement of insertion loss and quality factor of flexural plate-wave based alpha-fetoprotein biosensor using groove-type reflective grating structures,” J. Micro/Nanolith. MEMS MOEMS 12, 013017 (2013).
[12]I.-Y. Huang, C.-Y. Lin and J.-W. Lan, “Improving thin film ZnO SAW device insertion loss by grooved reflective grating structure,” J. Micro/Nanolith. MEMS MOEMS 12, 013019 (2013).
[13]J.-W. Lan, I.-Y. Huang, Y.-C. Lin, C.-Y. Lin, J.-L Chen and C.-H. Hsieh, “Development of a FPW biosensor with low insertion loss and high fabrication yield for detection of carcinoembryonic antigen,” Sensors 16, 1729 (2016).
[14]J.-W. Lan, C.-H. Hsieh, I.-Y. Huang, C.-Y. Lin, T.-Y. Tsai and C.-C. Wang, “Highly sensitive FPW-based microsystem for rapid detection of tetrahydrocannabinol in human urine,” Sensors 17, 2760 (2017).
[15]張逸文,具有高優值C軸選向氧化鋅壓電薄膜及交指式傳感電極之彎曲平板波元件的研究,國立中山大學電機工程學系碩士論文 (2005)。
[16]張欽貴,具溝槽反射結構之彎曲平板波元件開發,國立中山大學電機工程學系碩士論文 (2010)。
[17]林季緣,具聚焦式指叉轉換器設計之彎曲平板波元件開發,國立中山大學電機工程學系碩士論文 (2011)。
[18]呂冠東,具圓弧式指叉轉換器設計之低插入損耗彎曲平板波感測元件開發,國立中山大學電機工程學系碩士論文 (2014)。
[19]Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. actuators. B Chem. 143, 606-619 (2010).
[20]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of equivalent circuit model,” IEEE Trans. Microw. Theory Tech. 17, 856-864 (1969).
[21]O. Tigli and M. E. Zaghloul, “Design, modeling, and characterization of a novel circular surface acoustic wave device,” IEEE Sens. J. 8, 1807-1815 (2008).
[22]S. K. R. S. Sankaranarayanan and V. R. Bhethanabotla, “Design of efficient focused surface acoustic wave devices for potential microfluidic applications,” J. Appl. Phys. 103, 064518 (2008).
[23]T.-T. Wu, H.-T. Tang, and Y.-Y. Chen, “Frequency response of a focused SAW device based on concentric wave surfaces: simulation and experiment,” J. Phys. D Appl. Phys. 38, 2986-2994 (2005).
[24]C. S. Hartmann, D. T. Bell and R. C. Rosenfeld, “Impulse model design of acoustic surface wave filters,” IEEE Trans. Microw. Theory Tech. 21, 162-175 (1973).
[25]C. Campbell, Surface acoustic wave devices for mobil and wireless communications, Academic Press, Inc., Orlando, FL, USA (1989).
[26]沈靜怡,Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究,國立中山大學電機工程學系碩士論文 (2012)。
[27]S. G. Joshi, B. D. Zaitsev and I. E. Kuznetsova, “Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr. 49, 1730-1734 (2002).
[28]林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學研究所碩士論文 (2003)。
[29]謝翰岳,探討指叉式電極與反射閘極幾何結構對彎曲平板波攝護腺特異抗原生物感測器之影響,國立中山大學電機工程學系碩士論文 (2017)。
[30]賴奕勳,表面聲波濾波器理論模擬分析與比較,臺灣大學工程科學及海洋工程學研究所碩士論文 (2008)。
[31]F. Moller and W. Buff, “Electromagnetic feedthrough in Si/ZnO-SAW-devices,” IEEE Ultrasonics Symposium Proceedings, Tucson, AZ, USA, Oct. 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊