跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛名洋
研究生(外文):Syue, Ming-Yang
論文名稱:小球藻生長階段之胞內外有機物特性及其消毒副產物生成潛能
論文名稱(外文):Characteristics of extra- and intra-organic matter during Chlorella sp. growth and their disinfection by-products formation potential (DBPFP)
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang, Chih-Pin
口試委員:陳伯中李季眉張時獻黃志彬
口試委員(外文):Chen, Bo-ZhongLi, Ji-Mei Zhang, Shi-XianHuang, Chih-Pin
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:小球藻藻類有機物消毒副產物生成潛能
外文關鍵詞:Chlorella sp.algogenic organic matterdisinfection by-products formation potential
相關次數:
  • 被引用被引用:3
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
當水庫呈現優養化時,藻類不僅大量繁殖且常伴隨藻類有機物(algogenic organic matter, AOM)濃度增加,AOM又為淨水處理中主要生成消毒副產物(disinfection by-products, DBPs)之前驅物。因此,了解AOM之物化特性與其加氯後生成DBPs之關係是當前於淨水程序中重要的議題。本研究目的為取自馬祖勝利水庫水並培養分離後之優養化常見綠藻(小球藻,Chlorella sp.),在藻類生長過程中取樣並分離胞外有機物(extracellular organic matter, EOM)、胞內有機物(intracellular organic matter, IOM)及細胞有機物(cell-wall organic matter, COM),分析胞內外有機物之物化特性及組成成份,並進一步分析其消毒副產物生成潛能(DBPs formation potential, DBPFP),其中包含三鹵甲烷(trihalomethanes, THMs)及鹵化乙酸(haloacetic acids, HAAs)。研究中將於6 L之光生物反應器中培養Chlorella sp.,培養基為modified Chlorella medium並混合90% Air及10% CO2為曝氣氣體,流量為500 mL/min、溫度恆為30°C、光度為35 μmol/m2/s,並在小球藻培養過程中,以葉綠素a (chlorophyll a)、藻類乾重(dry mass)及溶解性有機碳(dissolved organic carbon, DOC)指標建立小球藻之生長曲線。根據3D螢光光譜顯示,不同生長階段下EOM組成成份均以類黃酸(fulvic acid-like)物質為主,而IOM及COM成份以芳香族類蛋白質(aromatic protein-like)物質為主。Chlorella sp.生長過程中,當藻類處於指數生長期(exponential phase)時,EOM之螢光物質會逐漸增加,直到生長穩定期(stationary phase)時則逐漸下降,而IOM之螢光物質會隨生長過程逐漸減少,直至生長穩定期才上升,COM之螢光物質變化則較不顯著。此外,亦發現EOM、IOM及COM之鹵化乙酸生成潛能(haloacetic acids formation potential, HAAFP)皆大於三鹵甲烷生成潛能(trihalomethanes formation potential, THMFP),IOM之C-DBPFP也較EOM及COM高。然而,小球藻中aromatic protein-like含量與其氯化後生成之C-DBPs之皮爾森相關係數(r)可達到0.956。本研究結果證實小球藻生長階段會影響胞內外有機物之C-DBPFP。
Algal eutrophication often occurs in reservoirs associating with the increase of algogenic organic matter (AOM). Because AOM is one of the major precursors to disinfection by-products (DBPs) in drinking water treatment, it is crucial in investigating the physiochemical properties of AOM and its impact on DBPs formation potential (DBPFP). The goal of this study was to separate extracellular (EOM), intracellular organic matter (IOM) and cell-wall organic matter (COM) in each algae growth phase and to characterize their physico-chemical properties and composition and thier corresponding DBPFP, including trihalomethanes (THMs) and haloacetic acids (HAAs). Raw water was collected from the reservoirs in Matsu to isolate the common green alga, Chlorella sp.. Chlorella sp. cultured in a 6 L photo-bioreactor in modified Chlorella medium with 90% Air and 10% CO2 (Illumination:35 μmol/m2/s, Temperature:30°C). The algae growth phases were determined by chlorophyll a, dry mass and DOC. The water samples of EOM, IOM and COM were collected by a serial filtration-gridding protocol at each growth phase. The results during different growth phases in 3D EEM showed that EOM mainly comprised of fulvic acid-like substances, while IOM and COM dominantly comprised of aromatic protein-like substances. The average fluorescence intensity (AFI) of EOM increased gradually in exponential phase, then decreased during stationary phase. The AFI of IOM decreased slowly and increased at stationary phase, but there was no apparent change in the AFI of COM. The yield of haloacetic acid formation potential (HAAFP) from EOM, IOM and COM were higher than trihalomethane formation potential (THMFP). C-DBPFP of IOM was also higher than that of EOM and COM. In addition, the intensity of aromatic protein-like in 3D EEM had a great Pearson correlation coefficient with the yield of C-DBPFP which can reach to 0.956. The results confirm that algal growth phases remarkably affect the yield of C-DBPFP.
摘 要 III
Abstract V
誌 謝 VII
目 錄 X
表目錄 XII
圖目錄 XIII
第一章 前 言 1
第二章 文獻回顧 3
2.1 藻類生長行為 3
2.2 藻類胞內外有機物成份及特性 6
2.3 藻類有機物成份及特性與消毒副產物生成潛勢之關係 8
第三章 實驗材料與方法 11
3.1 實驗架構 11
3.2 實驗方法 13
3.2.1 水質特性分析 13
3.2.2 藻類分離與培養 20
3.2.3 藻類生長曲線建立 24
3.2.4 藻類胞內外有機物分離 24
3.2.5 消毒副產物生成潛能分析 25
3.3 數據分析 26
第四章 結果與討論 27
4.1 小球藻培養之生長行為 27
4.2 小球藻生長階段胞內外有機物成份及特性 29
4.2.1螢光性有機物組成成份 29
4.2.2有機物分子及結構特性 35
4.3 小球藻生長階段胞內外有機物成份及特性與消毒副產物生成潛能之關係 40
第五章 結論與建議 45
5.1 結論 45
5.2 建議 46
參考文獻 47

Abdel-Aty, A. M., Ibrahim, M. B., El-Dib, M. A., Radwan, E. K. (2009) “Influence of chlorine on algae as precursors for trihalomethane and haloacetic acid production”, World Applied Sciences Journal, 6, 1215-1220.
Chang, E.E., Chiang, P. C., Ko, Y. W., Lan, W. H. (2001) “Characteristics of organic precursors and their relationship with disinfection by products”, Chemosphere, 44, 1231- 1236.
Chen, W., Westerhoff, P., Leenheer, J. A., Booksh, K. (2003) “Fluorescence excitation- emission matrix regional integration to quantify spectra for dissolved organic matter”, Environmental Science & Technology, 37, 5701-5710.
Coble P. G. (1996) “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy”, Marine Chemistry, 51, 325-346.
Deborde, M. and Gunten, U. V. (2008) “Reactions of chlorine with inorganic and organic compounds during water treatment - Kinetics and mechanisms: A critical review”, Water Research, 42, 13-51.
Fang, J., Yang, X., Ma, J., Shang, C., Zhao, Q. (2010) “Characterization of algal organic matter and formation of DBPs from chlor(am)ination”, Water Research, 44, 5897-5906.
Fang, J., Ma, J., Yang, X., Shang, C. (2010a) “Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa”, Water Research, 44, 1934-1940.
Fieldong, M., and Horth, H. (1986) “Formation of mutagens and chemicals during water treatment chlorination”, Water Supply, 103-126.
Han, L., Xu, B., Rao, J., Qi, F. (2015) “Effects of phosphorus concentration on algal organic matters formation from Scenedesmus quadricauda”, Research of Environmental Science, 2, 219-227.
Henderson, R. K., Baker, A., Parsons, S. A., Jefferson, B. (2008) “Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms”, Water Research, 42, 3435-3445.
Hong, H. C., Mazumder, A., Wong, M. H., Lianga, Y. (2008) “Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition”, Water Research, 42, 4941-4948.
Huang, J., Graham, N., Templeton, M.R., Zhang, Y., Collins, C., Nieuwenhuijsen, M. (2009) “A comparison of the role of two blue-green algae in THM and HAA formation”, Water Research, 43, 3009-3018.
Huang, W., Chu, H., Dong, B. (2012) “Characteristics of algogenic organic matter generated under different nutrient conditions and subsequent impact on microfiltration membrane fouling”, Desalination, 293, 104-111.
Huang, W., Chu, H., Dong, B., Liu, J. (2014) “Evaluation of different algogenic organic matters on the fouling of microfiltration membranes”, Desalination, 344, 329-338.
Hussein, M. A., El- Seheimy, A. E., Mohamed, Y. H., Kamel, W. M., Ibrahim, N. E. (2013) “Role of seasonal algal growths on disinfection byproducts in drinking water of Greater Cairo”, International Journal of Pharma Sciences, 3, 211-215.
Karimi, A. A. and Singer, P. C. (1991) “Trihalomethane formation in open reservoirs”, Journal of American Water Works Association, 83, 84-88.
Leloup, M., Pallier, V., Nicolau, R., Feuillade-Cathalifaud, G. (2015) “Assessing transformations of algal organic matter in the long-term:Impacts of humification-like processes”, International Journal of Molecular Sciences, 16, 18096-18110.
Lai, C. H., Chou, Y. C., Yeh, H. H. (2015) “Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting”, Journal of Membrane Science, 474, 207-214.
Li, L., Gao, N., Deng, Y., Yao, J., Zhang, K. (2012) “Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds”, Water Research, 46, 1233-1240.
Li, L., Guo, H., Shao, C., Yu, S., Yin, D., Gao, N., Lu, N. (2012) “Effect of algal organic matter (AOM) extracted from Microcystis aeruginosa on photo-degradation of Diuron”, Chemical Engineering Journal, 281, 265-271.
Merchuk, J. C., Ronen, M., Giris, S., Arad, S. M. (1998) “Light/dark cycles in the growth of the microalga Porphyridium sp.”, Biotechnology and Bioengineering, 59, 705-713.
Mishra, A. and Jha, B. (2013) “Microbial exopolysaccharides”, The Prokaryotes – Applied Bacteriology and Biotechnology, 179-192.
Myklestad, S. M. (1995) “Release of extracellular products by phytoplankton with special emphasis on polysaccharides”, The Science of the Total Environment, 165, 155-164.
Neta, P., Huie, E. and Ross, A. B. (1998) “Rate constants for reation of inorganic radicals in aqueous solution”, Journal of Physical and Chemical Reference Data Monographs, 17, 1027-1264.
Nguyen, M.-L., Westerhoff, P., Baker, L., Hu, Q., Esparza-Soto, M., Sommerfeld, M. (2005) “Characteristics and reactivity of algae-produced dissolved organic carbon”, Journal of Environmental Engineering, 131, 1574-1582.
Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X., Henderson, R. K. (2016) “The impact of algogenic organic matter on water treatment plant operation and water quality: A review”, Critical Reviews in Environmental Science and Technology, 291-335.
Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., Li, G. (2012) “Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling”, Water Research, 46, 2881-2890.
Wert, E. C. and Rosario-Ortiz, L. F. (2013) “Intracellular organic matter from Cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts”, Environmental Science & Technology, 47, 6332-6340.
Xie, P., Ma, J., Fang, J., Guan, Y., Yue, S., Li, X., Chen, L. (2013) “Comparison of permanganate preoxidation and preozonation on algae containing water: cell Integrity, characteristics, and chlorinated disinfection byproduct formation”, Environmental Science & Technology, 47, 14051-14061.
Yang, X., Guo, W., Shen, Q. (2011) “Formation of disinfection byproducts from chlor(am)ination of algal organic matter”, Journal of Hazardous Materials, 197, 378-388.
Zhou, S., Zhu, S., Shao, Y., Gao, N. (2015) “Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation”, Water Research, 72, 381-390.
Zhu, M., Gao, N., Chu, W., Zhou, S., Zhang, Z., Xu, Y., Dai, Q. (2015) “Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa”, Ecotoxicology and Environmental Safety, 120, 256-262.
李慧明,朱偉,李建龍,「 不同氮源對四尾柵藻生長的影響 」,水資源保護,2008。
蕭承祺,「 綠藻製程廢水以生物濾床處理及回收利用 」,國立中山大學碩士論文,2009。
經濟部水利署, 「 淨水場供水水質改善最勢對策評估研究-以金門自來水廠為例 」,2012。
經濟部水利署,「 馬祖地區自來水管理制度之研究(1/2) 」, 2013。
環保署水質監測統計年報,2014。
彭慶仁,「 小球藻於煙道氣最適生長條件之探討 」,國立臺中教育大學碩士論文,2014。
經濟部水利署,「 馬祖地區自來水管理制度之研究(2/2) 」, 2015。
翁思源,「 馬祖地區淨水場原水藻類有機物特性及三鹵甲烷生成潛能 」,國立交通大學碩士論文,2015。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top