跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳世欽
研究生(外文):Shih-Cin Chen
論文名稱:太陽能電池材料塗佈型I-III-VI族三元化合物銅鎵二硒(CuGaSe2)和銅銦二硒(CuInSe2)薄膜
論文名稱(外文):Preparation and Characterization of Chalcopyrite I-III-VI Group Ternary Compound CuGaSe2 and CuInSe2 polycrystalline thin films by printing processes
指導教授:楊立中楊立中引用關係
指導教授(外文):Li-Chung Yang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:90
中文關鍵詞:銅銦硒銅鎵硒熔煉非真空黃銅礦結構
外文關鍵詞:CuInSe2CuGaSe2Smeltingnon-vacuumChalcopyrite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用非真空製程製備銅銦硒(CuInSe2)和銅鎵硒(CuGaSe2)兩種不同材料的光伏元件之吸收層。首先將銅、銦、鎵、硒四種元素,依不同的比例分別熔煉成CuInSe2和CuGaSe2兩種三元合金,再藉由球磨法製備成漿料(Ink),並利用旋轉塗佈法將漿料均勻塗佈在玻璃基材上以形成前驅層,再把前驅層置於RTA爐管內進行快速退火製程,使薄膜能具有黃銅礦(Chalcopyrite)結構。
然後利用EDS和ICP量測其成分變化、SEM觀察其表面及截面的形貌變化、XRD觀察晶體結構之變化、UV-Vis觀察其能隙變化。由本實驗結果得知,薄膜在退火後具有黃銅礦結構之特徵峰,且隨著熱處理溫度的增加,銅含量比例上升,半高寬會變窄,晶粒隨之變大。CuInSe2在熱處理溫度600oC,所得到的薄膜結構最佳,而CuGaSe2則是在熱處理溫度650oC時為最佳參數,CuInSe2和CuGaSe2能隙分別為1.04eV和1.73eV。


In this experiment, we use non-vacuum process to prepare CuInSe2 and CuGaSe2 these two different materials as the absorber layers for photovoltaic devices. First of all, copper, indium, gallium, and selenium with different ratios were smelted into CuInSe2 and CuGaSe2 ternary alloys. The ink was prepared using ball milling and was printed onto a glass substrate to form a precursor layer by spin coating. Then, the samples were treated with rapid thermal annealing (RTA) process within a furnace, and the obtained film has a structure of chalcopyrite.
Energy dispersive spectroscopy (EDS) and (ICP) measurements were used to detect the change of its composition, surface and cross-section morphologies were determined by scanning electron microscopy (SEM) images, the changes of the composition were measured by X-ray diffraction (XRD) spectra, and the band gap variation was obtained by UV-Vis spectra. From the experimental results, the thin film turns into a chalcopyrite structure after annealing, the composition of copper content increases with increasing heat treatment temperature, the half-height width of XRD spectra becomes narrower, and the crystal grains become larger. It is found that CuInSe2 thin film with chalcopyrite structure can be obtained by heating at 600oC, and CuGaSe2 has the best quality with the heat treatment temperature of 650oC. The bandgaps of CuInSe2 and CuGaSe2 after annealing were 1.04 and 1.73 eV, respectively.


總目錄

中文摘要................. i
Abstract.................ii
致謝.................iii
總目錄.................iv
表目錄.................viii
圖目錄.................ix
第一章 簡介.................1
1.1 前言.................1
1.2薄膜太陽電池之類型.................2
1.2.1 非晶矽薄膜太陽能電池................. 3
1.2.2 染料敏化薄膜太陽能電池.................4
1.2.3 碲化鎘薄膜太陽能電池................. 5
1.2.4 銅銦鎵硒薄膜太陽能電池.................5
1.3銅銦硒(CISe)結構介紹................. 6
1.4 研究動機.................7
第二章 理論基礎與文獻回顧................. 14
2.1 太陽能電池工作原理.................14
2.2太陽能電池之能量轉換效率與填充因數................. 16
2.3銅銦硒太陽能電池製程技術................. 17
2.3.1 基板選擇.................18
2.3.2 鉬金屬背電極.................18
2.3.3 銅銦鎵硒主吸收層.................19
2.3.4 硫化鎘緩衝層 .................22
2.3.5 透明導電層.................23
2.3.6 氟化鎂抗反射層................. 24
2.4銅銦鎵硒吸收層製程技術................. 24
2.4.1 蒸鍍法................. 25
2.4.2 硒化法................. 26
2.4.3 塗佈法................. 27
2.5 球磨粉碎原理及其方法.................28
2.5.1 球磨粉碎原理 .................28
2.5.2 機械分散法.................29
2.5.3 化學分散法.................30
2.5.4 超音波分散法 .................31
2.6 影響球磨粉碎顆粒大小的變因.................32
2.6.1 結構影響.................32
2.6.2 球磨機轉速影響................32
2.6.3 球磨介質充填率影響.................33
2.6.4 乾、濕式球磨方式影響................. 33
第三章 實驗流程與設備.................37
3.1 實驗方法與步驟 .................37
3.1.1 基材前處理.................37
3.1.2 漿料之配置.................38
3.1.3 塗佈步驟.................38
3.1.4 軟烤步驟.................38
3.1.5 快速退火處理.................39
3.2 實驗設備.................39
3.2.1 高溫退火爐.................39
3.2.2 次微米粉末製造設備.................40
3.2.3 旋轉塗佈儀................. 40
3.2.4 快速退火系統 .................41
3.3 實驗分析設備................. 42
3.3.1 X光繞射儀................. 42
3.3.2 掃描式電子顯微鏡................. 43
3.3.3 能量光譜儀.................45
3.3.4感應耦合電漿質譜儀.................45
3.3.5紫外光-可見光光譜儀.................46
第四章 結果與討論.................58
4.1薄膜成份分析.................59
4.2 顯微結構分析.................60
4.3 結晶特性分析.................61
4.3.1 CuInSe2結晶特性分析................. 62
4.3.2 CuGaSe2結晶特性分析................. 63
4.3.3 CuInSe2和CuGaSe2結晶特性分析比較.................65
4.4光學特性分析.................69
第五章 結論.................80
參考文獻................. 82
Extended Abstract.................100
簡歷.................104


表目錄

表1. 1 Ⅰ-Ⅲ-Ⅵ2族化合物半導體能隙.................8

表3. 1 材料參數.................48
表3. 2 球磨參數.................48
表3.3 熱處理參數.................49
表3. 4 各種X光源靶材之波長.................49

表4. 1 Cu、In、Ga、Se元素一覽表.................67
表4. 2 CuInSe2薄膜之EDS成分分析經ICP校正.................68
表4. 3 CuGaSe2薄膜之EDS成分分析經ICP校正.................68

圖目錄

圖1. 1 單晶、多晶、非晶示意圖.................9
圖1. 2 非晶矽薄膜太陽能電池結構圖.................9
圖1. 3 染料敏化薄膜太陽能電池結構圖.................10
圖1. 4 碲化鎘薄膜太陽能電池結構圖.................11
圖1. 5 CIGS薄膜太陽能電池結構圖.................11
圖1. 6各類太陽能電池吸收材料之各波長之吸收係數.................12
圖1. 7 黃銅礦(Chalcopyrite)結構圖................. 13
圖1. 8物理氣相沉積之蒸鍍法和濺鍍蒸鍍法及硒化法.................13

圖2. 1 太陽照射下的p-n接面示意圖及能帶圖.................34
圖2. 2 太陽能電池I-V特性曲線.................35
圖2. 3 CuInSe2、CuGaSe2和CuAlSe2之能隙值和晶格常數圖 .................35
圖2. 4 NREL 三階段共蒸鍍製程.................36

圖 3. 1 實驗流程圖 .................50
圖 3. 2旋轉塗佈示意圖.................51
圖 3. 3二階段軟烤示意圖.................51
圖 3. 4熱處理載台設計.................52
圖 3. 5高溫退火爐................. 52
圖 3. 6可程式行星式離心球磨機.................53
圖 3. 7 氧化鋯球磨罐與氧化鋯磨球.................53
圖 3. 8 旋轉塗佈機.................54
圖 3. 9 紅外線快速升溫爐.................54
圖 3. 10 X光繞射儀.................55
圖 3. 11 掃描式電子顯微鏡及能量散佈光譜儀.................55
圖 3. 12 感應耦合電漿質譜儀.................56
圖 3. 15 (紫外光-可見光)光譜分析儀.................56
圖 3. 16 (紫外光-可見光)光譜分析儀示意圖.................57

圖4. 1 CuInSe2薄膜熱處理後之顯微結構.................69
圖4. 2 CuInSe2薄膜熱處理後之橫截面顯微結構.................70
圖4. 3 CuGaSe2薄膜熱處理後之顯微結構 .................71
圖4. 4 CuGaSe2薄膜熱處理後之橫截面顯微結構.................72
圖4. 5各種元素之飽和蒸汽壓與溫度關係圖.................73
圖4. 6 Cu2Se-In2Se3 二元相圖.................74
圖4. 7 Cu2Se-Ga2Se3二元相圖.................75
圖4. 8 CuInSe2薄膜在不同熱處理溫度下之XRD圖譜.................76
圖4. 9 CuInSe2薄膜在不同熱處理溫度的特徵峰強度之XRD圖譜.................76
圖4. 10 CuGaSe2薄膜在不同熱處理溫度下之XRD圖譜.................77
圖4. 11 CuGaSe2薄膜在不同熱處理溫度的特徵峰強度之XRD圖譜.................77
圖4. 12 CuInSe2和CuGaSe2薄膜未退火的特徵峰強度比較圖.................78
圖4. 13 CuInSe2薄膜之UV-Vis圖譜.................79
圖4. 14 CuGaSe2薄膜之UV-Vis圖譜.................79


參考文獻
1.季法文,2009,“CIGS太陽能電池技術現況與發展技術”,中山科學研究院 材料暨光電研究所。
2.黃惠良等著,2008,太陽電池,pp. 19-20,五南圖書,台北。
3.莊嘉琛,2006,太陽能工程-太陽電池篇,pp. 4-75,全華科技圖書股份有限公司,台北。
4.Michael Gratzel, Brian O''Regan, 1991,“high-efficiency solar cell based ondye-sensitized colloidal TiO2 films”, Nature , 353 (24), pp. 737 - 740, October.
5.O’Regan, B.;Gratzel, M., 1991,“Handbook of Photovoltaic Science and Engineering”, Nature, 353(6346), pp. 737-740.
6.A. Luque and S. Hegedus, , 2003,“Energy Collected and Delivered by PV Modules”, John Wiley & Sons.
7.曾百亨等著,2008,太陽電池,pp. 268,五南圖書,台北。
8.H. J. Muller, 1993, Semiconductors for Solar Cells, Artech House, Boston.
9.S. H. Kwon, S. C. Park, B. T. Ahn, K. H. Yoon and J. Song, 1998, “Effect of CuIn3Se5 layer thickness on CuInSe2 thin films and devices”, Solar Energy, 64(1-3), pp. 55-60, September.
10.黃瑜, “CIGS太陽電池技術與展望”,工研院產業學院, 民國96 年8 月 16 日。
11.S. Zweigart, D. Schmid, J. Kessler, H. Dittrich and H. W. Schock, “Studies of the growth-mechanism of polycrystalline CuInSe2 thin-films prepared by a sequential progress”, J. Cryst. Growth, 146, pp. 233-238 (1995).
12.A. Rockett, et al., “Na incorporation in Mo and CuInSe2 from production processes”, Solar energy materials and solar cells, 59, pp. 255-264, (1999).
13.R. Kimura, T. Nakada and P. Fons, “Photoluminescence properties of sodium incorporation in CuInSe2 and Cu1In3Se5 thin films”, Solar energy materials and solar cells, 67, pp. 289-295, (2001).
14.D. Braunger, et al., “Influence of sodium on the growth of polycrystalline Cu(in,Ga)Se2 thin films”, Thin Solid Films, 361, pp. 161-166, (2000).
15.J. Holz, F. Karg and H. von Philipsborn, “Proceedings of the 12th European Photovoltaic Solar Energy Conference”, Ampsterdam, p. 1592, (1994).
16.M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter and H. W. Schock, “Proceedings of the 1st World Conference on Photovoltaic 35 Energy Conversion”, IEEE, New York, p. 156, (1994).
17.謝秀琴、戴賢輝、謝世豪, “TFT-LCD 無鹼玻璃基板材料介紹”, 化工所產資組。
18.劉勝隆,2008,摻雜鈉與硫對太陽電池材料銅銦硒與鉬薄膜之影響與研究,國立虎尾科技大學光電材料工程所,pp.51。
19.R. Chakrabarti, A.B. Maity, R. Pal, D. Bhattacharyya, S. Chaudhuri, and A.K. Pal, 1997,“Estimation of Stress in Polycrystalline CuInSe2 Films Deposited on Mo-Coated Glass Substrates”, Phys. Stat. Sol. (a), 160(1), pp.67-76, Marth.
20.J. R. Tuttle, M. Contreras, M. H. Bode, et al., 1995, “Structure chemistry and growth mechanisms of photovoltaic quality thin-film Cu(In,Ga)Se2 grown from a mixed-phase precursor”, J. Appl. Phys., 77(1), pp. 153-161, January.
21.D. Hamemamm, Crit, Rev. Solid State Mater. Sci., 14, p. 377, (1988).
22.D. Schmid, M. Ruckh, F. Crunwald and J. W. Schock, J. Appl. Phys., 73, p.2902, (1993).
23.F. J. Pern, R. Noufi, A. Mason and A. Franz, Thin Solid Films, 202, p. 299, (1991).
24.R. W. Birkmire, L. C. Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, Solar Cells, 16, p.419, (1986).
25.B. M. Basol, V. K. Kapur and R. C. Kullberg, Solar Cells, 27, p.299, (1989).
26.K. W. Mitchell, G. A. Pollack and A. V. Mason, “Proceedings of the 20th Institute of Electrical and Electronics Engineers Photovoltaic Specialists Conference”, (Institute of Electrical and Electronics Engineers, New York, 1988), p.1578.
27.L. C. Yang and A. Rocket, J. Appl. Phys., 75(2), p.1185, (1994).
28.R. J. Matson et al., Mater. Res. Soc. Symp. Proc., 426, 183, (1996).
29.翁榮洲,2008,“CIGS太陽能電池的發展與未來”,工業材料雜誌,264期,12月。
30.T. Nakada and M. Mizutani, 2000, “Improved efficiency of Cu(In,Ga)Se2 thin film solar cells with chemically deposited ZnS butter layers by air-annealing-formation of homojunction by solid phase diffusion”, Proc 28th IEEE PVSC, pp. 529-534, Anchorage, September.
31.W. J. Jeong, S. K. Kimb and G. C. Parka, 2006, “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell”, Thin Solid Films, 506-507, pp. 180-183, May.
32.A. Luque and S. Hegedus, 2003, Handbook of photovoltaic science and engineering, John Wiley & Sons Ltd.
33.Y. Hamakawa, 2004, Thin-Film Solar Cells:Next Generation Photovoltaics and Its Applications, Springer.
34.Kegao Liua, Hong Liub, JiyangWangb, Lei Shia, 2009, “Synthesis and characterization of Cu2Se prepared y hydrothermal co-reduction”, Journal of Alloys and Compounds, May.
35.U. C. Bohnke and G. Kuhn, 1987, “Phase Relations in the Ternary System Cu-In-Se”, Journal of Materials Science, 22(5), pp. 1635-1641.
36.H. W. Schock et al., 1992, “High Efficiency Chalcopyrite Based Thin Film Solar Cells-Results of the Eurocis-Colaboration”, Eleventh E.C. PVSEC, pp. 116-119, Montreux, October.
37.B. M. Baso, V. K. Kapur and A. Halani, 1991, “Advances in High Efficiency CuInSe2 Solar Cells Prepared by the Selenization Technique”, Twenty Second IEEE PVSC, pp. 893-897, Las Vegas, October.
38.M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, and R. Noufi, Proc., 1994, “Photovolt. Energy Conv.”, IEEE, 68, Piscataway.
39.黃惠良,2008,“太陽電池”,五南圖書出版股份有限公司,p285,台北
40.F. Burmeister, C. Schfle, T. Matthes, M. Bhmisch, J. Boneberg and P. Leiderer, 1997, “Colloid Monolayers as Versatile Lithographic Masks”, Langmuir, 13(11), pp. 2983-2987.
41.林麗娟,1994,“X光繞射原理及其應用”,工業材料雜誌,86期,2月。
42.B. D. Cullity and S. R. Stock, 2001, Elements of X-ray Diffraction (3rd ed), pp. 170, Prentice Hall, New Jersey.
43.陳力俊等編著,1990,材料電子顯微鏡學,儀科中心出版,Chapter 11,新竹。
44.汪建民等著,2001,材料分析,中國材料科學學會,pp.121-125 & pp.169-173, 4月。
45.2003, “User’s Manual”, Ametek Process & Analytical Instruments.
46.李珠,2002,“感應耦合電漿質譜儀技術及其在材料分析上的應用”,工業材料雜誌,181期,1月。
47.K. E. Jarvis, A. L. Gray and R. S. Houk, 1992, “Handbook of Inductively Coupled Plasma Mass Spectrometry”, Blackie, Glasgow.
48.MyoungGuk Park et al., 2012, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by a direct solution coating process”, Journal of Alloys and Compounds, pp. 68-74.
49.H. Jitsukawa, H. Matsushita and T. Takizawa, 1998,“Phase diagrams of the (Cu2Se, CuSe)-CuGaSe2 system and the crystal growth of CuGaSe2 by the solution method”, Journal of Crystal Growth, 186(4), pp. 587-593, March.
50.Paifeng Luo n , Ruzhong Zuo, Litao Chen,2010, “The preparation of CuInSe 2 films by combustion method and non-vacuum spin-coating process” Solar Energy Materials & Solar Cells pp. 1146–1151
51.Fangyang Liu, Jia Yang, Jiaolian Zhou,2012, “One-step electrodeposition of CuGaSe 2 thin films”, Thin Solid Films 520 ,pp. 2781–2784.
52.Wei Wei, Shengyi Zhang, Chunxia Fang,2008, “Electrochemical behavior and electrogenerated chemiluminescence of crystalline CuSe nanotubes”, Solid State Sciences 10 ,pp. 622-628
53.C. Guillen and J. Herrero, 2006, “CuInS2 and CuGaS2 thin films grown by modulated flux deposition with various Cu contents”, phys. stat. sol. (a), 203(10), pp. 2438-2443, August.
54.D. Jiles, 1994, “Introduction to the Electronic Properties of Materials”, Advanced Materials, 7(4), pp. 423-424, April.

55.J. I. Pankove, 1975, Optical Processes in Semiconductots, pp. 93, Dover Inc., New York.
56.O. Igarashi, J. Crystal Growth, 143, p.213, (1994).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [1]余明助,2006,“組織變革不確定感與員工工作態度關係之研究-以組織溝通和員工信認為中介變數”,人力資源管理學報,第6卷第2期,頁89~110。
2. [2]李秀英、劉俊儒、楊筱翎,2011,“企業社會責任與公司績效之關聯性”,東海管理評論,第13卷第1期,頁77~112。
3. [4]林文玲、傅鍾仁,2011,“企業社會責任之揭露對會計資訊價值攸關性─以台灣資訊電子上市公司為例”,商管科技季刊,第12卷第2期,頁209~229。
4. [6]邱垂昌、王育民、魏嘉伶、張簡婷,2011,“創新、人力資本投入與企業經營效率─以我國IC設計業為例”,中山管理評論,第19卷第2期,頁343~385。
5. [7]張元,2011,“社會責任公司有較高的股票報酬嗎?”,輔仁管理評論,第18卷第1期,頁79~118。
6. [8]莊智薰、林福來、沈明鑑、李岳蓉,2011,“員工分紅入股與組織績效─智慧資本觀點”,管理與系統,第18卷第2期,頁207~237
7. [11]黃正雄、黃國隆,2003,“價值觀一致性對人力資源措施與組織承諾間關係的中介效果”,人力資源管理學報,第3卷第2期,頁115~133。
8. [12]廖婉鈞、林月雲、虞邦祥,2009,“知覺組織利害關係人重要程度與組織績效之關係:企業社會責任作為之中介效果”,管理學報,第26卷第2期,頁213~232。
9. [13]鄧美貞、王琬青,2012,“企業社會責任與財務績效:以經營績效為中介效果”,朝陽商管評論,第11卷第2期,頁77~104。
10. 29.翁榮洲,2008,“CIGS太陽能電池的發展與未來”,工業材料雜誌,264期,12月。
11. 41.林麗娟,1994,“X光繞射原理及其應用”,工業材料雜誌,86期,2月。
12. 46.李珠,2002,“感應耦合電漿質譜儀技術及其在材料分析上的應用”,工業材料雜誌,181期,1月。