跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范綱允
研究生(外文):Kang-Yun Fan
論文名稱:根據機率密度函數及區間直覺模糊評估值的最大區間範圍之變異數和標準差的多屬性決策新方法
論文名稱(外文):Multiattribute Decision Making Based on Probability Density Functions and the Variances and Standard Deviations of Largest Ranges of Evaluating Interval-Valued Intuitionistic Fuzzy Values
指導教授:陳錫明陳錫明引用關係
指導教授(外文):Shyi-Ming Chen
口試委員:呂永和壽大衛
口試委員(外文):Yung-Ho LeuTa-Wei Shou
口試日期:2019-7-22
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:106
中文關鍵詞:區間直覺模糊集合區間直覺模糊值多屬性決策機率密度函數標準差變異數z分數決策矩陣
外文關鍵詞:Interval-Valued Intuitionistic Fuzzy SetsInterval-Valued Intuitionistic Fuzzy ValuesMultiattribute Decision MakingProbability Density FunctionStandard DeviationVariancez-Score Decision Matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出一個基於機率密度函數及區間直覺模糊評估值的最大區間範圍的變異數及標準差之多屬性決策新方法。首先,我們所提出之多屬性決策方法得到決策者給的決策矩陣中每個區間直覺模糊評估值的最大區間範圍。然後,其計算每個屬性的最大區間範圍的平均值。然後,其得到決策矩陣中出現的每個區間直覺模糊評估值的最大區間範圍的機率密度函數。然後,其計算每個最大區間範圍的變異數並計算每個屬性的最大區間範圍的標準差。然後,其基於所得之決策矩陣中每個區間直覺模糊評估值的最大區間範圍、所得之每個屬性的最大區間範圍的平均值、及所得之每個屬性的最大區間範圍的標準差來構建z分數決策矩陣。然後,其得到每個屬性的區間直覺模糊權重的轉換權重。最後,其根據所得之z分數決策矩陣及每個屬性的區間直覺模糊權重的轉換權重以計算每個選項的加權分數,其中加權分數的值越大,選項的偏好順序越高。本論文所提之多屬性決策新方法可以克服目前已存在之多屬性決策方法的缺點,其在區間直覺模糊環境中提供一種非常有用的多屬性決策方法。
In this thesis, we propose a new multiattribute decision making method based on probability density functions and the variances and standard deviations of the largest ranges of evaluating interval-valued intuitionistic fuzzy values. First, the proposed method obtains the largest range of each evaluating interval-valued intuitionistic fuzzy value in the decision matrix provided by the decision maker. Then, it computes the average value of the largest ranges of each attribute. Then, it obtains the probability density function of the largest range of each evaluating interval-valued intuitionistic fuzzy value appearing in the decision matrix. Then, it computes the variance of each largest range and calculates the standard deviation of the largest ranges of each attribute. Then, it builds the z-score decision matrix based on the obtained largest range of each evaluating interval-valued intuitionistic fuzzy value appearing in the decision matrix, the obtained average value of the largest ranges of each attribute and the obtained standard deviation of the largest ranges of each attribute. Then, it gets the transformed weight of the interval-valued intuitionistic fuzzy weight of each attribute. Finally, it computes the weighted score of each alternative based on the obtained z-score decision matrix and the transformed weight of the interval-valued intuitionistic fuzzy weight of each attribute. The larger the value of the weighted score, the better the preference order of the alternative. The proposed multiattribute decision making method can conquer the shortcomings of the existing multiattribute decision making methods. It provides us with a very useful way for multiattribute decision making in interval-valued intuitionistic fuzzy environments.
1. Introduction
2. Preliminaries
3. Analyzing the Drawbacks of Chen and Han’s Multiattribute Decision Making Method
4. Multiattribute Decision Making Based on Probability Density Functions and the Variances and Standard Deviations of Largest Ranges of Evaluating Interval-Valued Intuitionistic Fuzzy Values
5. Conclusions
S. M. Chen and W. H. Han, “An improved MADM method using interval-valued intuitionistic fuzzy values,” Information Sciences, vol. 467, pp. 489-505, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊