跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾致翔
研究生(外文):Chih-Hsiang Tseng
論文名稱:合成金-二氧化鈦核-殼奈米粒子
論文名稱(外文):Synthesis of Au@TiO2 Core-Shell Nanoparticles
指導教授:蘇昭瑾
指導教授(外文):Chao-Chin Su
口試委員:李文仁余琬琴
口試委員(外文):Wen-Ren LiWan-Chin Yu
口試日期:2011-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:金奈米粒子二氧化鈦核-殼奈米粒子
外文關鍵詞:Gold nanoparticlesTitanium dioxideCore-Shell nanoparticlesles
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的研究主要分成兩個部分,第一部分是金奈米粒子的合成與粒徑的控制。利用硫氰化鈉將前驅物四氯金酸還原成金奈米粒子,並利用鍵結在還原金奈米粒子上的硫氰陰離子,使金奈米粒子因帶負電而互相排斥,懸浮在溶液中。金奈米粒子的尺寸最小可控制在4 nm。另外,利用檸檬酸鈉當作還原劑和保護基,進行還原及金奈米粒子的製備,而奈米粒子的尺寸可控制在16~17 nm之間。
研究的第二部分是採用一鍋反應法,合成金-二氧化鈦核-殼奈米粒子,利用維他命C和檸檬酸鈉還原四氯金酸,再將二氧化鈦的前驅物四氟化鈦加入其中,並加以水熱,經過不同條件的測試,可成功製備出兩種形貌的二氧化鈦包覆金奈米粒子並應用於染料敏化太陽能電池。


This thesis included two parts. In the first part, we synthesized the gold nanoparticles (Au-NP) by reducing of hydrogen tetrachloroaurate (HAuCl4) by sodium thiocyanate (NaSCN) and sodium citrate (Na3-citrate). The thiocyanate ions adsorbed on Au-NP form self-assembled monolayers on Au-NP to make dispersion of Au-NP in the solution.. The size of Au-NP was as small as 4 nm. Using Na3-citrate as reducing and stabilizing reagent, the diameter of the Au-NP is about 16 to 17 nm.
The second part of the thesis is to apply a one-pot hydrothermal reaction to synthesize the Au-TiO2 core-shell nanoparticles (Au@TiO2) using titanium tetrafluoride as TiO2 precursors and HAuCl4 as Au precursor and ascorbic acid/Na3-citrate mixture as reducing agent. Two different morphology of Au@TiO2 nanostructures were obtained after 48 h hydrothermal reaction at 180 °C . The preliminary trial of Au@TiO2 in dye-sensitized solar cells was performed.


摘 要 I
ABSTRACT II
誌 謝 III
目 錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 5
第二章 文獻回顧與理論基礎 6
2.1 奈米粒子的介紹 6
2.1.1 奈米粒子的效應 6
2.1.1.1 蓮花效應(Lotus Effect) 7
2.1.1.2 表面效應(Surface Effect) 8
2.1.1.3 量子尺寸效應(Quantum Size Effect) 8
2.1.2 奈米粒子的合成 9
2.1.2.1 雷射削熔法(Laser Ablation Technique) 12
2.1.2.2 物理氣相沉積(Physical Vapor Deposition) 13
2.1.2.3 電解法(Electrolysis) 14
2.1.2.4 氧化還原法(Oxidation and Reduction) 15
2.1.3 核-殼奈米粒子的介紹 18
2.2 二氧化鈦的介紹 19
2.2.1 二氧化鈦的構造與特性 20
2.2.2 二氧化鈦的製備方式 22
第三章 實驗藥品與儀器 26
3.1 實驗藥品 26
3.2 實驗儀器 27
3.2.1 X射線繞射儀(XRD) 28
3.2.2穿透式電子顯微鏡(TEM) 30
3.2.3 紫外光∕可見光吸收光譜儀(UV/Vis) 31
第四章 實驗部份 34
4.1 金奈米粒子製備 34
4.2 金-二氧化鈦核-殼奈米粒子製備 36
4.3染料敏化太陽能電池元件的製備與組裝 40
4.3.1 工作電極的製備 40
4.3.2 對電極的製備 44
4.3.3 太陽能電池的組裝 44
第五章 結果與討論 45
5.1 金奈米粒子製備 45
5.1.1 穿透式電子顯微鏡(TEM)分析 46
5.1.2 X光繞射儀(XRD)分析 58
5.1.3 紫外光-可見光(UV-Vis)吸收光譜分析 59
5.2 金-二氧化鈦核-殼奈米粒子製備 59
5.2.1 穿透式電子顯微鏡(TEM)分析 61
5.3 水熱法製備金-二氧化鈦核-殼奈米粒子 62
5.3.1 實驗步驟 62
5.3.1.1 穿透式電子顯微鏡(TEM)分析 63
5.3.2 水熱罐填充率的影響 65
5.3.2.1 穿透式電子顯微鏡(TEM)分析 66
5.3.2.2 紫外光-可見光(UV-Vis)吸收光譜分析 68
5.3.3 逐滴加入Ascorbic acid對不同實驗條件的影響 69
5.3.3.1 穿透式電子顯微鏡(TEM)分析 71
5.3.3.2 紫外光-可見光(UV-Vis)吸收光譜分析 74
5.3.3.3 X光繞射儀(XRD)分析 76
5.3.4 迅速加入Ascorbic acid對不同實驗條件的影響 82
5.3.4.1 穿透式電子顯微鏡(TEM)分析 83
5.3.4.2 紫外光-可見光(UV-Vis)吸收光譜分析 86
5.3.4.3 X光繞射儀(XRD)分析 89
5.4 染料敏化太陽能電池的應用 93
第六章 結論 95
參考文獻 97


[1]R.P. Feynman, There''s Plenty of Room at the Bottom, California Institute of Technology, Richard P. Feynman, 1959.
[2]陳秋樺, 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子, 國立清華大學, 2007, 74.
[3]R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles", Science 277 (1997) 1078
[4]H.-H. Cho, B. Park, H.-J. Kim, J. Shim, S. Jeon, J.-h. Jeong, J.-J. Kim, "Planarization of nanopatterned substrates using solution process to enhance outcoupling efficiency of organic light emitting diodes", Current Applied Physics 10 (2010) e139
[5]C.W. Yen, M.A. Mahmoud, M.A. El-Sayed, "Photocatalysis in gold nanocage nanoreactors", Journal of Physical Chemistry A 113 (2009) 4340
[6]S.V. Sonti, A. Bose, "Cell Separation Using Protein-A-Coated Magnetic Nanoclusters", Journal of Colloid and Interface Science 170 (1995) 575
[7]Y. Yamamoto, T. Miura, T. Teranishi, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, H. Hori, "X-ray magnetic circular dichroism study of gold nanoparticles protected by polymer", Journal of Magnetism and Magnetic Materials 272-276 (2004) E1183
[8]R.H. Terrill, T.A. Postlethwaite, C.-h. Chen, C.-D. Poon, A. Terzis, A. Chen, J.E. Hutchison, M.R. Clark, G. Wignall, "Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters", Journal of the American Chemical Society 117 (1995) 12537
[9]S.-i. Naya, M. Teranishi, K. Kimura, H. Tada, "A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition", Chemical Communications 47 (2011) 3230
[10]W. Chen, J.-Y. Zhang, Y. Di, I.W. Boyd, "Photo-chemical production of gold nanoparticles in monolithic porous silica by using a novel excimer ultraviolet source", Inorganic Chemistry Communications 6 (2003) 950
[11]M.K. Chow, C.F. Zukoski, "Gold Sol Formation Mechanisms: Role of Colloidal Stability", Journal of Colloid and Interface Science 165 (1994) 97
[12]C.-H. Kuo, M.H. Huang, "Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach", Langmuir 21 (2005) 2012
[13]G. Wu, T. Chen, W. Su, G. Zhou, X. Zong, Z. Lei, C. Li, "H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst", International Journal of Hydrogen Energy 33 (2008) 1243
[14]F. Caruso, "Nanoengineering of Particle Surfaces", Advanced Materials 13 (2001) 11
[15]S. Cavaliere-Jaricot, M. Darbandi, T. Nann, "Au-silica nanoparticles by "reverse" synthesis of cores in hollow silica shells", Chemical Communications (2007) 2031
[16]X.W. Lou, C. Yuan, L.A. Archer, "Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls: Cavity Size Tuning and Functionalization", Small 3 (2007) 261
[17]J. Li, C.Z. Hua, "Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors", Angewandte Chemie - International Edition 44 (2005) 4342
[18]D. Cheng, X. Zhou, H. Xia, H.S.O. Chan, "Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes", Chemistry of Materials 17 (2005) 3578
[19]R.T. Tom, A.S. Nair, N. Singh, M. Aslam, C.L. Nagendra, R. Philip, K. Vijayamohanan, T. Pradeep, "Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties", Langmuir 19 (2003) 3439
[20]尹邦躍, 奈米時代, 臺北, 五南圖書出版股份有限公司, 2003.
[21]J.D. Aiken, R.G. Finke, "A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis", Journal of Molecular Catalysis A: Chemical 145 (1999) 1
[22]W. Thielicke, CG of Lotus effect., 2007.
[23]盧永坤, 奈米科技概論, 台中, 滄海書局, 2005.
[24]P. Buffat, J.P. Borel, "Size effect on the melting temperature of gold particles", Physical Review A 13 (1976) 2287
[25]G. Schmid, Metals, John Wiley & Sons, Inc., 2002.
[26]N.R. Jana, L. Gearheart, C.J. Murphy, "Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles", Langmuir 17 (2001) 6782
[27]B. Nikoobakht, M.A. El-Sayed, "Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method", Chemistry of Materials 15 (2003) 1957
[28]C. Lofton, W. Sigmund, "Mechanisms Controlling Crystal Habits of Gold and Silver Colloids", Advanced Functional Materials 15 (2005) 1197
[29]H. Bonnemann, Ryan M. Richards, "Nanoscopic Metal Particles − Synthetic Methods and Potential Applications", European Journal of Inorganic Chemistry 2001 (2001) 2455
[30]F. Mafune, J.-y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, "Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant", The Journal of Physical Chemistry B 105 (2001) 5114
[31]M.T. Reetz, W. Helbig, "Size-Selective Synthesis of Nanostructured Transition Metal Clusters", Journal of the American Chemical Society 116 (1994) 7401
[32]D. V. Goia, E. Matijevic, "Preparation of monodispersed metal particles", New Journal of Chemistry 22 (1998) 1203
[33]M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system", Journal of the Chemical Society, Chemical Communications (1994) 801
[34]J. Fink, C.J. Kiely, D. Bethell, D.J. Schiffrin, "Self-Organization of Nanosized Gold Particles", Chemistry of Materials 10 (1998) 922
[35]M.A. Hayat, Colloidal Gold, Volume 1: Principles, Methods, and Applications, 1989.
[36]P.M. Arnal, M. Comotti, F. Schuth, "High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation", Angewandte Chemie International Edition 45 (2006) 8224
[37]H.W. Kwon, Y.M. Lim, S.K. Tripathy, B.G. Kim, M.S. Lee, Y.T. Yu, "Synthesis of AU/TiO2 core-shell nanoparticles from titanium isopropoxide and thermal resistance effect of TiO2 shell", Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 46 (2007) 2567
[38]X. Huang, C. Guo, J. Zuo, N. Zheng, G.D. Stucky, "An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties", Small 5 (2009) 361
[39]X. Wang, H. Ji, X. Zhang, H. Zhang, X. Yang, "Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor", Journal of Materials Science 45 (2010) 3981
[40]U. Diebold, "The surface science of titanium dioxide", Surface Science Reports 48 (2003) 53
[41]G.W. Morey, "Hydrothermal Synthesis", Journal of the American Ceramic Society 36 (1953) 279
[42]M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, "Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide", Chem. Mater. (2002) 1974
[43]R.I. Walton, "Subcritical solvothermal synthesis of condensed inorganic materials", Chemical Society Reviews 31 (2002) 230
[44]T. Sugimoto, K. Okada, H. Itoh, "Synthetic of Uniform Spindle-Type Titania Particles by the Gel-Sol Method", Journal of Colloid and Interface Science 193 (1997) 140
[45]Y. Oguri, R.E. Riman, H.K. Bowen, "Processing of anatase prepared from hydrothermally treated alkoxy-derived hydrous titania", Journal of Materials Science 23 (1988) 2897
[46]Y.Y. Kazumichi Yanagisawa, Qi Feng and Nakamichi Yamasaki, "Formation mechanism of fine anatase crystals from amorphous titania under hydrothermal conditions", Journal of Materials Research 13 (1998) 825
[47]C.-C. Wang, J.Y. Ying, "Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals", Chemistry of Materials 11 (1999) 3113
[48]Y. Qian, Q. Chen, Z. Chen, C. Fan, G. Zhou, "Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti", Journal of Materials Chemistry 3 (1993) 203
[49]H. Cheng, J. Ma, Z. Zhao, L. Qi, "Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles", Chemistry of Materials 7 (1995) 663
[50]T. Nakajima, "An Alternative Formation Theory of Beat Applied to the Pendelloesung Fringe and Proposed Confirmatory Experiments", Journal of Low Temperature Physics 138 (2005) 1039
[51]王長君, 科儀新知, 行政院國家科學委員會精密儀器發展中心, 2000, 51.
[52]彭湘育,碩士論文, "二氧化鈦的改質及可見光光催化反應與染料敏化太陽能電池的應用", 國立臺北科技大學 (2010)
[53]L. De Brouckere, J. Casimir, "Preparation d''hydrosols d''or homeodisperses tres stables", Bulletin des Societes Chimiques Belges 57 (1948) 517
[54]L. Polavarapu, Q.-H. Xu, "Water-Soluble Conjugated Polymer-Induced Self-Assembly of Gold Nanoparticles and Its Application to SERS", Langmuir 24 (2008) 10608
[55]I. Pastoriza-Santos, L.M. Liz-Marzan, "N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis", Advanced Functional Materials 19 (2009) 679
[56]N.C. Pramanik, S.I. Seok, B.Y. Ahn, "Wet-chemical synthesis of crystalline BaTiO3 from stable chelated titanium complex: Formation mechanism and dispersibility in organic solvents", Journal of Colloid and Interface Science 300 (2006) 569
[57]J. Polte, T.T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A.F. Thunemann, R. Kraehnert, "Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation", Journal of the American Chemical Society 132 (2010) 1296


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 二氧化鈦的改質及可見光光催化反應與染料敏化太陽能電池的應用
2. 低溫製備奈米金-氧化鋅薄膜應用於染料敏化太陽能電池之研究
3. 以微波聚合反應製備壓克力/無機奈米粒子 混成光學薄膜
4. 製備金奈米粒子修飾二氧化鈦奈米線電極應用於電化學生物感測器
5. 添加多壁奈米碳管、修飾金奈米粒子於二氧化鈦薄膜的製備與染料敏化太陽能電池
6. 以金奈米粒子侷部表面電漿共振修飾染料敏化太陽能電池光電極之研究
7. 以金奈米顆粒和金/矽核殼奈米顆粒混合至介孔層之染料敏化太陽能電池光伏特性研究
8. 以金奈米粒子之侷部表面電漿修飾二氧化鈦介孔層薄膜製備鈣鈦礦太陽能電池
9. 金奈米粒子之侷部表面電漿共振效應修飾二氧化鈦 電子傳輸層製備鈣鈦礦太陽能電池
10. 以自我組裝法組裝金奈米粒子/二氧化鈦奈米複合薄膜應用於葡萄糖感測之研究
11. 以聚多巴胺修飾金奈米粒子-二氧化鈦奈米複合薄膜 應用於侷部表面電漿共振葡萄糖生物感測器之研究
12. 一維二氧化鈦奈米結構:應用於染料敏化太陽能電池與光催化
13. 研究孟加拉玫瑰紅與金奈米粒子間在高分子聚合物與二氧化鈦介質下的螢光增強效應
14. (I)利用光譜反捲積定量模型研究光合成之金奈米粒子的電漿性質及粒子大小動力學機制(II)摻雜二氧化鋯之二氧化鈦奈米複合光觸媒的製備鑑定及光分解效能的探討
15. 應用多層自組裝金奈米粒子晶片於分析方法之開發與應用
 
無相關期刊