|
1.郭琇靜&顧瑞祥(2007年11月)。應用支援向量機於管制圖異常圖形之辨識。論文發表於原國立新竹教育大學舉辦之「華民國品質學會第 43 屆年會暨第 13 屆全國品質管理研討會」,原新竹教育大學。 2.Al-Assaf, Y. (2004). Recognition of control chart patterns using multi-resolution wavelets analysis and neural networks. Computers & Industrial Engineering, 47(1), 17-29. 3.Byun, H., & Lee, S. W. (2002). Applications of support vector machines for pattern recognition: A survey. In Pattern recognition with support vector machines (pp. 213-236). Springer, Berlin, Heidelberg. 4.Cheng, H. P., & Cheng, C. S. (2009). Control chart pattern recognition using wavelet analysis and neural networks. 品質學報, 16(5), 311-321. 5.Cuentas, S., Peñabaena-Niebles, R., & Garcia, E. (2017). Support vector machine in statistical process monitoring: a methodological and analytical review. The International Journal of Advanced Manufacturing Technology, 91(1-4), 485-500. 6.Dittenbach, M., Rauber, A., & Merkl, D. (2002). Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing, 48(1-4), 199-216. 7.Du, S., Huang, D., & Lv, J. (2013). Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines. Computers & Industrial Engineering, 66(4), 683-695. 8.Guh, R. S., & Shiue, Y. R. (2005). On-line identification of control chart patterns using self-organizing approaches. International Journal of Production Research, 43(6), 1225-1254. 9.Hachicha, W., & Ghorbel, A. (2012). A survey of control-chart pattern-recognition literature (1991–2010) based on a new conceptual classification scheme. Computers & Industrial Engineering, 63(1), 204-222. 10.Kao, L. J., Lee, T. S., & Lu, C. J. (2016). A multi-stage control chart pattern recognition scheme based on independent component analysis and support vector machine. Journal of Intelligent Manufacturing, 27(3), 653-664. 11.Khormali, A., & Addeh, J. (2016). A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering optimized support vector machine. ISA transactions, 63, 256-264. 12.Kiang, M. Y. (2001). Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics & Data Analysis, 38(2), 161-180. 13.Kim, J. S., Park, C. S., Baek, J. G., & Kim, S. S. (2012, December). Control chart pattern recognition using wavelet based neural networks. In Proceedings of World Academy of Science, Engineering and Technology (No. 72, p. 1121). World Academy of Science, Engineering and Technology (WASET). 14.Lin, S. Y., Guh, R. S., & Shiue, Y. R. (2011). Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach. Computers & Industrial Engineering, 61(4), 1123-1134. 15.Liu, Y. M., & Zhou, H. F. (2013). Control chart pattern recognition based on wavelet analysis. In Applied Mechanics and Materials(Vol. 291, pp. 2479-2485). Trans Tech Publications. 16.Lu, C. J., Shao, Y. E., & Li, C. C. (2014). Recognition of concurrent control chart patterns by integrating ICA and SVM. Applied Mathematics & Information Sciences, 8(2), 681. 17.Miljković, D. (2017, January). Brief review of self-organizing maps. In MIPRO 2017. 18.Namdari, M., Jazayeri-Rad, H., & Hashemi, S. J. (2014). Process fault diagnosis using support vector machines with a genetic algorithm based parameter tuning. Journal of Automation and Control, 2(1), 1-7. 19.Peng, Z. K., & Chu, F. L. (2004). Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical systems and signal processing, 18(2), 199-221. 20.Pham, D. T., & Chan, A. B. (1998). Control chart pattern recognition using a new type of self-organizing neural network. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 212(2), 115-127. 21.Pham, D. T., Packianather, M. S., & Charles, E. Y. A. (2008). Control chart pattern clustering using a new self-organizing spiking neural network. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(10), 1201-1211. 22.Purintrapiban, U., & Corley, H. W. (2012). Neural networks for detecting cyclic behavior in autocorrelated process. Computers & Industrial Engineering, 62(4), 1093-1108. 23.Taskovski, D., Milchevski, A., & Kostadinov, D. (2012). Classification of Power Quality Disturbances Using Wavelets and Support Vector Machine. Elektronika ir Elektrotechnika, 19(2), 25-30. 24.Valkonen, V. P., Kolehmainen, M., Lakka, H. M., & Salonen, J. T. (2002). Insulin resistance syndrome revisited: application of self-organizing maps. International journal of epidemiology, 31(4), 864-871. 25.Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media. 26.Wang, D. S., Yu, Y. W., Wang, S. H., & Cheng, B. W. (2013, July). Statistical process control on autocorrelated process. In Service Systems and Service Management (ICSSSM), 2013 10th International Conference on (pp. 81-84). IEEE. 27.Western Electric Company. (1956). Statistical quality control handbook. Western Electric Company. 28.Wu, S., & Chow, T. W. (2004). Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition, 37(2), 175-188.
|