跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭懷仁
研究生(外文):Huai-Ren Guo
論文名稱:以濕式化學法製備TiO2晶相、形貌與其成長性質之研究
論文名稱(外文):Study the crystalline phase, morphology and growth properties of TiO2 by wet-chemical method
指導教授:張文固
指導教授(外文):Wen-Ku chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:120
中文關鍵詞:濕式化學法三氯化鈦鈦酸四丁酯二氧化鈦
外文關鍵詞:Wet-chemical methodtrichloridetetrabutyl titanatetitanium dioxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用化學溶液法、水熱法及溶劑熱法來製備各種TiO2結晶相與形貌的成長,並透過X光繞射光譜儀分析各結晶相的組成,與場發射式電子顯微鏡觀察材料表面形貌。
實驗結果發現,以化學溶液法及TiCl3作為前驅物加熱至90度,並控制反應溶液pH=1.16時,經過六小時成長的主要產物為Brookite相TiO2顆粒,當反應時間增加為十二小時,其產物為不規則排列的Brookite/Rutile混合相TiO2奈米棒結構。若採用水熱法製備時,則可在180度12小時反應條件下,得到Brookite:Rutile=88.31:11.69的混合結晶相。當前驅物改為鈦酸四丁酯(TBOT)時,可以利用調控鹽酸含量來控制成長形貌,並在溶液中成長出3~7μm的TiO2微米刺球,及自組裝Rutile結晶相次微米棒狀陣列,其厚度約為5.83μm。
由實驗結果可以得知TiO2表面形貌隨著製備方式與前驅物的不同,我們可以控制成長出Brookite/Rutile混合相的奈米顆粒、奈米棒、以及Rutile相的微米刺球及次微米棒狀陣列。
In this study,Preparation of the variety of TiO2 crystalline phase and morphology of the growth by the chemical solution method、hydrothermal method and solvothermal method. Analysis of the crystalline phase composition of TiO2 by X-ray diffractometer,and observe the surface morphology by scanning electron microscopy.
The experimental results showed that as a precursor to TiCl3 heated to 90 ℃ by chemical solution,and control the reaction solution at pH = 1.16, through six hours the growth of the main product for Brookite phase of TiO2 particles, when the reaction time increased to twelve hours, the product of the mixed phase of the irregular arrangement of the Brookite / Rutile TiO2 nanorod structure.By the Hydrothermal Method,the mixed phase of the Brookite / Rutile= 88.31:11.69 can be obtained,when the reaction temperature increased to 180 ℃ and reaction time increased to twelve hours. When precursors is tetrabutyl titanate (TBOT), regulation of hydrochloric acid content can control the growth morphology and growth in the solution 3 to 7μm of TiO2-micron stab the ball, and self-assembly Rutile crystalline phase microrods shaped array, of a thickness of about 5.83μm.
The experimental results that the TiO2 surface morphology with different preparation methods and precursors, we can control the growth Brookite / Rutile mixed-phase nanoparticles, nanorods, and Rutile micron stab the ball and sub-micron rods-shaped array.
摘要 I
Abstract II
第一章、緒論 1
1.1概述 1
1-2研究動機 3
1-3研究目的 4
第二章、基礎理論背景 5
2.1氧化鈦簡介 5
2.1.1物理性質 5
2.1.2應用範圍 9
2.1.2.1光催化劑 9
2.1.2.2染料敏化太陽能電池 11
2.2影響TiO2性質因素 13
2.2.1晶體結構 13
2.2.2製備方式 19
2.2.2.1化學溶液法 19
2.2.2.2水熱法 19
2.2.2.3溶劑熱法 19
2.2.2.4溶膠凝膠法 20
2.2.2.5微胞與反微胞法 20
2.2.2.6溶劑法 20
2.2.2.7直接氧化法 21
2.2.2.8化學氣相沉積法 21
2.2.2.9物理氣相沉積法 21
2.2.2.10電沉積法 21
2.2.2.11超音波化學法 22
2.2.2.12 TiO2介孔/奈米孔材料 22
2.2.2.13 TiO2氣凝膠 22
2.2.2.14 TiO2蛋白石與光材料 23
2.2.2.15 TiO2奈米薄片製備 23
2.3文獻回顧 24
2.3.1基材FTO的選取 24
2.3.2 溶液TiCl3之pH值變化影響 25
2.3.3水熱法之棒狀 28
2.3.4 TBOT(Tetrabutyl titanate)的選取 31
2.3.5抑制微奈米棒晶面成長因素 32
2.3.6抑制微奈米球晶面成長 33
2.4 TiO2反應模式 37
第三章、實驗方法 39
3.1實驗規劃與設計 39
3.2實驗設備與材料選用 43
3.2.1基材 43
3.2.1.1載玻片 43
3.2.1.2銦錫氧化物(Tin-doped Indium Oxide,ITO) 44
3.2.1.3氟錫氧化物(Florine-doped Tin Oxide,FTO) 45
3.2.2藥品 46
3.2.2.1 TiCl3(純度12%) 46
3.2.2.2 TBOT(純度99%) 47
3.2.3高壓釜(Autoclave) 47
3.2.4氣流循環是精密烘箱(Drying ovens with forced convection) 47
3.2.5超音波震盪機(Ultrasonic vibration machine) 48
3.2.6超純水系統(Ultrapure Water Systems) 49
3.4分析方法 50
3.4.1場發掃描式電子顯微鏡(FE-SEM) 50
3.4.2X光能量散佈光譜分析(EDS) 51
3.4.3X-Ray繞射分析(XRD) 51
第四章、結果與討論 55
4.1、FTO基材 55
4.2化學溶液法 56
4.2.1溫度變化 56
4.2.2時間變化 60
4.1.3未退火V.S.退火 65
4.1.4成長機制推導 68
4.1.5化學溶液法之小結論 71
4.2水熱法 72
4.2.1 化學溶液法V.S.水熱法 72
4.2.2水熱法溫度提升 76
4.2.3綜合化學溶液法與水熱法之環境比較 79
4.3溶劑熱法 80
4.3.1 FTO基材擺設方式 82
4.3.2 FTO導電面朝上玻璃面貼杯底 83
4.3.2.1溫度變化 83
4.3.2.2時間變化 85
4.3.2.3調整不同鹽酸量證明粉體沉積於基材上 87
4.3.2.4 鹽酸體積量變化 92
4.3.3 FTO導電面向下斜靠於杯壁 94
4.3.3.1鹽酸體積量變化 94
4.3.3.2推導雙面成長次微米棒狀陣列 99
4.3.3.3 不同鹽酸體積量之溫度、時間影響效應 105
4.3.3 溶劑熱法之小結論 110
第五章、總結論 111
第六章、參考文獻 113

圖目錄
圖1-1微觀、介觀、宏觀之尺寸 1
圖1-2奈米科技應用 2
圖2-1二氧化鈦相轉變圖 6
圖2-2二氧化鈦分解臭氧 9
圖2-3光子激發電子 10
圖2-4光轉變電示意圖 12
圖2-5金紅石晶體結構 13
圖2-6金紅石排列方式 14
圖2-7銳鈦礦晶體結構 15
圖2-8板鈦礦晶體結構 16
圖2-9 TiO2-II原子排列方式 17
圖2-10 TiO2-II原子排列方式 17
圖2-11 FTO基材與二氧化鈦鍵結 24
圖2-12 (a)2H (b)5H (c)25H (d)48H之厚度剖面圖 24
圖2-13 不同pH值v.s.混相比例 25
圖2-14 pH=0.5 26
圖2-15 pH=1.0 26
圖2-16 pH=4.0 27
圖2-17 pH=6.5 27
圖2-18 (a)溫度80℃-24H (b)溫度80℃-168H 28
圖2-19 溫度200℃-1.5H 28
圖2-20溫度200℃-24H(a)剖面圖(b)TEM圖 29
圖2-21 (a) PT- Substrate (b) PT- Substrate經反應160℃-3H (c)未PT- Substrate經反應160℃-3H (d) PT- Substrate經反應190℃-3H (e) PT- Substrate經反應160℃-3H之剖面圖。 31
圖2-22 TiO2表面鍵結圖示 32
圖2-23 鹽酸體積量(a)2.15 (b)5.0 (c)6.0 (d)9.0 (e)15ml 34
圖2-24 Rutile與Anatase結合方式 35
圖2-25 [Ti(O-C4H9)4-n-m(OH)nClm] 36
圖3-1、FTO基材清洗步驟 38
圖3-2玻璃晶體結構 42
圖3-3原子撞擊玻璃圖示 43
圖3-4 FTO基材與二氧化鈦鍵結圖示 44
圖3-5氣流循環是精密烘箱 47
圖3-6超音波震盪機 47
圖3-7超純水系統流程圖 48
圖3-8 FE-SEM機台 49
圖3-9光譜學 50
圖3-10 X光管結構圖 51
圖3-11布拉格繞射圖 52
圖4-1 FTO清潔後(a)俯視圖 (b)剖面圖 (c)XRD強度分布圖 (d)AFM 54
圖4-2反應時間2H (a)50 (b)60 (c)70 (d)80 (e)90 ℃ 56
圖4-3反應時間2H,XRD範圍(a)20°~80° (b) 20°~40°,黑色虛線: FTO訊號,咖啡色虛線: Brookie晶面訊號 57
圖4-4 EDS之Ti原子百分比,反應時間2H,溫度範圍:50~90℃ 58
圖4-5 UV-visible-反應溫度2H,溫度範圍:50~90℃ 59
圖4-6反應溫度90℃(a)0.5 (b)2.0 (c)6.0 (d)12 H 60
圖4-7 XRD反應溫度90℃,時間範圍: 0.5~12H 61
圖4-8 EDS-反應溫度90℃,時間範圍:0.5~12H 62
圖4-9 UV-visible-反應溫度90℃,時間範圍:0.5~12H 62
圖4-10反應溫度90℃,反應時間2H (a)退火前(b)退火後 64
圖4-11 EDS-反應溫度90℃,反應時間2H (a)退火前(b)退火後 65
圖4-12UV-visible-反應溫度90℃,反應時間2H(a)退火前(b)退火後 65
圖4-13 XRD-反應溫度90℃,反應時間2H (a)退火前(b)退火後 66
圖4-14 FTO於TiCl3溶液中之模擬情境圖 67
圖4-15 B-TiO2成核成長模擬圖 68
圖4-16 R-TiO2覆蓋B-TiO2圖 69
圖4-17反應溫度90℃、時間12H之TiO2形貌比較 72
圖4-18反應溫度90℃,不同生成環境之時間變化XRD比較圖 73
圖4-19反應溫度90℃,時間12H之不同生成環境吸收度比較 74
圖4-20反應時間12H之半定量晶相百分比 75
圖4-21 反應時間12H之溫度變化 (a)90 (b)120 (c)150 (d)180 ℃ 76
圖4-22反應時間2H之溫度變化 (a)90 (b)120 (c)150 (d)180 ℃ 77
圖4-23反應時間2H,範圍(a)20°~80° (b) 20°~40°,黑色虛線: FTO訊號;咖啡色虛線: Brookie訊號;暗紅色虛線: Rutile訊號 78
圖4-24 不同前驅物之TiO2成長反應方程式 79
圖4-25 FTO基材擺設方式 81
圖4-26溫度變化反應(a)90 (b)120 (c)150 (d)180℃、反應時間2H、溶液比例50ml丙酮+10ml鹽酸+1ml TBOT 82
圖4-27反應溫度120℃、時間變化(a)2 (b)6 (c)12 (d)24 H、溶液比例50ml丙酮+10ml鹽酸+1ml TBOT 84
圖4-28反應溫度180℃、時間24H,鹽酸含量分別為(a)5(b)10(c)15ml 86
圖4-29溫度變化120℃v.s.180℃、時間24H、鹽酸含量分別為(a)5(b)10(c)15ml,證明微米球為溶液中所合成的TiO2粉體 88
圖4-30 反應溫度180℃、時間24H、基材棒狀陣列與粉體XRD偵測圖 89
圖4-31XRD偵測模擬圖 90
圖4-32反應溫度180℃、時間24H、鹽酸體積量變化Xml丙酮+Yml鹽酸+1mlTBOT(X+Y=60);Y=(a)5 (b)10 (c)15 (d)20 (e)25 (f)30 ml 91
圖4-33反應溫度180℃、時間24H、鹽酸體積量變化XRD圖示 92
圖4-34反應溫度180℃、時間 24H、鹽酸體積量變化Xml丙酮+Yml鹽酸+1mlTBOT(X+Y=60);Y=(a)5 (b)10 (c)15 (d)20 (e)25 (f)30 ml 94
圖4-35反應溫度180℃- 24H之鹽酸體積量變化剖面圖,Xml丙酮+Yml鹽酸+1mlTBOT(X+Y=60);Y=(a)5 (b)10 (c)15 (d)20 (e)25 ml 95
圖4-36反應溫度180℃、時間24H、鹽酸體積量之總厚度與底層厚度趨勢 96
圖4-37反應溫度180℃-24H,不同鹽酸體積量之XRD分析圖 97
圖4-38 FTO基材受鹽酸腐蝕模擬圖 99
圖4-39溫度180℃短時間反應,溶液35ml丙酮+25ml鹽酸+1ml TBOT 100
圖4-40溫度180℃長時間反應,溶液35ml丙酮+25ml鹽酸+1ml TBOT,(a系列)12H (b系列)24H 101
圖4-41 雙面微奈米棒陣列成長模擬圖 103
圖4-42 反應溫度150℃之時間變化,溶液40ml丙酮+20ml鹽酸+1ml TBOT 105
圖4-43 溶液40ml丙酮+20ml鹽酸+1ml TBOT之溫度、時間形貌變化 106
圖4-44 固定反應溫度150℃-6H之不同鹽酸體積量形貌變化 107
圖4-45 定溫150℃-溶液30ml丙酮+30ml鹽酸+1ml TBOT之時間變化 108

表目錄
表2-1五種不同晶體結構二氧化鈦之物理性質 8
表2-2 時間V.S.厚度 25
表2-3水熱法之棒狀參數條件 29
表2-4抑制晶面成長之參數條件 33
表2-5隨著鹽酸體積增加、TiO2球狀直徑增加 34
表3-1不同基材之選用 44
表3-2實驗材料 45
表3-3高壓釜規格 46
表3-4FE-SEM規格 49
表3-5XRD參考條件 53
表4-1 FTO基材與R-TiO2關係 100
[1] 奈米科技/馬遠榮著;台北市,[台北縣新店市],商周出版,城邦文化發行,農學總經 銷,2002[民91], p.21
[2] 奈米科技導論:基本原理及應用/蔡信行,孫光中;新文京出版,2009年9月30日, p.10
[3] 奈米科技:基礎應用與實作/丁志明;高立出版,2005, p.15
[4] Shing Huang, Pin Ju Chueh, Yun-Wei Lin, Tung-Sheng Shih, Show-Mei Chuang, "Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure." Toxicology and Applied Pharmacology,2009,241:p. 182-194
[5] 施仲杰,"利用光還原法在薄膜上成長金的微奈米結構",國立東華大學材料科學與工程學研究所碩士論文(2009),p.114
[6] 宋明熹,"以化學溶液法至被氧化鋅為奈米結構之研究", 國立東華大學材料科學與工程學研究所碩士論文(2010),p.73
[7] Chen, X. and S.S. Mao, "Titanium dioxide nanomaterials: Synthesis,properties, modifications , and applications." Chemical Reviews.,2007.107(7): p. 2891-2959.
[8] Feng, X.J., et al., "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications." Nano Letters.,2008. 8(11): p. 3781-3786.
[9] Jun, Y.W., et al., "Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals." Journal of the American Chemical Society, 2003., 125(51): p. 15981-15985.
[10] Funda SayNlkan, Meltem Asiltu¨rk, Sema Erdemog˘lu, Murat Akarsuc, Hikmet SayNlkan, Murat Erdemog˘lu, Ertug˘rul Arpac¸"Characterization and photocatalytic properties of TiO2-nanosols synthesized by hydrothermal process at low temperature." Materials Letters., 2006,60: p. 230 – 235
[11] Huogen Yu, Jiaguo Yu, Bei Cheng, Minghua Zhou, "Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons." Journal of Solid State Chemistry.,2006,179: p. 349–354
[12] Lingqing Dong, Kui Cheng, Wenjian Weng, Chenlu Song, Piyi Du, Ge Shen, Gaorong Han, "Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates." Thin Solid Films.,2011,519: p.4634–4640
[13] K. Byrappa , T. Adschiri, "Hydrothermal technology for nanotechnology." Progress in Crystal Growth and Characterization of Materials.,2007,53: p.117-166
[14] Ryuhei Yoshida, Yoshikazu Suzuki, Susumu Yoshikawa, "Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments." Journal of Solid State Chemistry.,2005,178: p. 2179–2185
[15] Krishnamurthy Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, "Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–gel technique." Ultrasonics Sonochemistry.,2010,17: p.409–415
[16] Yang You, Shiying Zhang, Long Wan, Difa Xu, "Preparation of continuous TiO2 fibers by sol–gel method and its photocatalytic degradation on formaldehyde." Applied Surface Science.,2012,258: p.3469– 3474
[17] Sujith Perera, Edward G. Gillan, "A facile solvothermal route to photocatalytically activenanocrystalline anatase TiO2 from peroxide precursors." Solid State Sciences .,2008,10: p.864-872
[18] Xiaojun Shen, Jinlong Zhang, Baozhu Tian, "Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile." Journal of Hazardous Materials .,2011,192: p.651– 657
[19] Qijun Zhang, Chenghua Sun, Jun Yan, Xiujie Hu, Shuyun Zhou, Ping Chen, "Perpendicular rutile nanosheets on anatase nanofibers: Heterostructured TiO2 nanocomposites via a mild solvothermal method." Solid State Sciences., 2010,12: p.1274-1277
[20] Anne Chabas, Lucile Gentaz, Tiziana Lombardo, Romain Sinegre, Roberto Falcone, Marco Verità, Hélène Cachier, "Wet and dry atmospheric deposition on TiO2 coated glass." Environmental Pollution .,2010,158: p.3507-3512
[21] 羅啟仁,"瑞鈦礦高能球膜之相變態研究", 國立東華大學材料科學與工程學研究所碩士論文(2009),p.33
[22] 彭懷夫,"中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用",國立東華大學化學研究所碩論文(2004),p.34
[23] 楊筱筠,"利用斜角度沉積法製備二氧化鈦薄膜於染料敏化太陽能電池之運用",國立東華大學電子工程研究所碩論文(2008),p.123
[24] 蔡宜親,"二氧化鈦奈米顯微結構對染料敏化太陽能電池效率影響之研究",國立東華大學材料科學與工程學研究所碩士論文(2007),p.116.57
[25] 王順輝,"濺鍍製備硼與碳摻雜二氧化鈦薄膜的可見光光觸媒之研究", 國立東華大學材料科學與工程學研究所碩士論文(2005),p.100
[26] Alain C. Pierre† and Gérard M. Pajonk, Chemistry of Aerogels and Their Applications. Chem. Rev.,2002,102(11),p.4243–4266
[27] A. P. Wight and M. E. Davis, "Design and Preparation of Organic−Inorganic Hybrid Catalysts." Chem. Rev.,2002,102 (10),p. 3589–3614
[28] James A. Schwarz, Cristian. Contescu, Adriana.Contescu, "Methods for Preparation of Catalytic Materials." Chem. Rev.,1995,95(3),p.477–510
[29] Zhong-lin Lu, Ekkehard Lindner, and Hermann A.Mayer, "Applications of Sol−Gel-Processed Interphase Catalysts." Chem. Rev., 2002,102 (10),p.3543–3578
[30] Jian Xu, Jian-Ping Ge, and Ya-Dong Li, "Solvothermal Synthesis of Monodisperse PbSe Nanocrystals." J. Phys. Chem.,. 2006, 110,p. 2497-2501
[31] Baomei Wen, Chunyan Liu, and Yun Liu, "Depositional Characteristics of Metal Coating on Single-Crystal TiO2 Nanowires." J. Phys. Chem. B.,2005, 109,p. 12372- 12375
[32] Jiaqing Li, Luoping Li, Lei Zheng, Yuezhong Xian, Litong Jin, "Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO2 film on quartz." Talanta.,2006,68,p.765–770
[33] NingWang, Xinyong Li, YuxinWang, Xie Quan, Guohua Chen, "Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method." Chemical Engineering Journal.,2009,146,p. 30–35
[34] P.G. Karlsson, J.H. Richter, M.P. Andersson, M.K.-J. Johansson, J. Blomquist, P. Uvdal, A. Sandell, "TiO2 chemical vapor deposition on Si(111) in ultrahigh vacuum: Transition from interfacial phase to crystalline phase in the reaction limited regime." Surface Science.,2011, 605,p.1147–1156
[35] Tomohisa Izumi, Tokuyuki Teraji, Toshimichi Ito, "Room-temperature growth of single-crystalline TiO2 thin films on nanometer-scaled substrates by dc magnetron sputtering deposition." Journal of Crystal Growth.,2007,299,p.349–357
[36] Yiwen Tang, Zhigang Chen, Zhijie Jia, Lisha Zhang, Jialin Li, "Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films." Materials Letters.,2005,59,p.434– 438
[37] Hyeon-Ju An, Song-Rim Jang, R. Vittal, Jiwon Lee, Kang-Jin Kima, "Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for application to dye-sensitized solar cells." Electrochimica Acta., 2005,50,p. 2713–2718
[38] Wojciech Simka, Dagmara Puszczyk, Ginter Nawrat, "Electrodeposition of metals from non-aqueous solutions." Electrochimica Acta., 2009,54,p.5307–5319
[39] Yoshiteru Mizukoshi, Yoji Makise, Tatsuya Shuto, Jinwei Hu, Aki Tominaga,Sayoko Shironita, Shuji Tanabe, "Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol." Ultrasonics Sonochemistry .,2007,14,p.387–392
[40] Sen Guo, Zhongbiao Wu, Haiqiang Wang, Fan Dong, "Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances." Catalysis Communications.,2009,10,p.1766–1770
[41] Changlin Yu, JimmyC.Yu, MuiChan, "Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres." Journal of Solid State Chemistry.,2009,182, p.1061–1069
[42] C.A. Muller, M.S. Schneider, T.Mallat, and A.Baiker, "Epoxidation of α-Isophorone with Amine-Modifued Titania-Silica Hybrid Aerogel: Evidence for Ti-Amine Interaction." Journal of Catalysis.,2000,192,p.448-451
[43] Yoshitake Masuda, Kazumi Kato, "Anatase TiO2 films crystallized on SnO2:F substrates in an aqueous solution." Thin Solid Films.,2008,516,p.2547–2552
[44] Sophie Cassaignon, Magali Koelsch, Jean-Pierre Jolivet, "From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile):Thermohydrolysis and oxidation in aqueous medium." Journal of Physics and Chemistry of Solids.,2007,68,p.695–700
[45] Keita Kakiuchi, Eiji Hosono, Hiroaki Imai, Toshio Kimura, Shinobu Fujihara, "{1 1 1} -faceting of low-temperature processed rutile TiO2 rods." Journal of Crystal Growth.,2006,293, p.541–545
[46] Yuxiang Li, Min Guo, Mei Zhang, Xidong Wang, "Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates." Materials Research Bulletin., 2009,44, p.1232–1237
[47] Hua Gui Yang, Cheng Hua Sun, Shi Zhang Qiao, Jin Zou, Gang Liu, Sean Campbell Smith,Hui Ming Cheng, Gao Qing Lu, "Anatase TiO2 single crystals with a large percentage of reactive facets." letters.,2008,453(29),p.1038
[48] Thuy-Duong Nguyen Phan, Hai-Dinh Pham, Tran Viet Cuong, Eui Jung Kim, Sunwook Kim, Eun Woo Shin, "A simple hydrothermal preparation of TiO2 nanomaterials using concentrated hydrochloric acid." Journal of Crystal Growth.,2009,312,p.79–85
[49] Frank H. Stillinger, "Interaction potentials and inherent structures in liquids,glass,and crystals." Physica D.,1997,107,p.383-391
[50] YANG Bing, DU Yong, LIU Yong, "Recent progress in criterions for glass forming ability." Trans. Nonferrous Met. Soc. China.,2009,19,p.78-84
[51] Akihiko Kono, Zongbao Feng, Norimoto Nouchi, Fumiya Shoji, "Fabrication of low resistivity tin-doped indium oxide films with high electron carrier densities by a plasma sputtering method." Vacuum.,2009,83,p.548–551
[52] Masayuki Kamei, Yuzo Shigesato, Satoru Takaki, "Origin of characteristic grain- subgrain structure of tin-doped indium oxide films." Thin Solid Film.,1995,259,p.38-45
[53] P.K. Manoj, Benny Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, "Preparation and characterization of indium-doped tin oxide thin films." Ceramics International.,2007,33, p.273–278
[54] Z.B. Zhoua,*, R.Q. Cui, Q.J. Pang, Y.D. Wang, F.Y. Meng,T.T. Sun, Z.M. Ding, X.B. Yu, "Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process." Applied Surface Science.,2001,172,p.245-252
[55] Huarui Xu, Aibing Yu, "Synthesis and sintering of tin-doped indium oxide nanoparticles with uniform size." Materials Letters.,2007,61,p.4043–4045
[56] C.A. Huang , K.C. Li, G.C. Tu, W.S. Wang, "The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid." Electrochimica Acta., 2003, 48, p.3599-/3605
[57] M. Ait Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, "Comparative study of ITO and FTO thin films grown by spray pyrolysis." Materials Research Bulletin.,2009, 44, p.1458–1461
[58] Kiyoung Lee, Doohun Kim, Steffen Berger, Robin Kirchgeorg, Patrik Schmuki, "Front side illuminated dye-sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO-glass." Electrochemistry Communications.,2012,22,p.157–161
[59] Qinghui Zeng, Liangzhuan Wu, Yang Zhang, Bin Qi and Jinfang Zhi, "Low-temperature and normal-pressure growth of oriented rutile TiO2 nanorod arrays on F-doped tin oxide substrate." Scripta Materialia.,2010,62,p.810–813
[60] A.T. Raghavender, A.P. Samantilleke, Pedro Sa, B.G. Almeida, M.I. Vasilevskiy, Nguyen Hoa Hong, "Simple way to make Anatase TiO2 films on FTO glass for promising solar cells." Materials Letters.,2012,69p.59–62
[61] Shengjie Peng, Fangyi Cheng, Jing Liang, Zhanliang Tao, Jun Chen, "Facile solution- controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application." Journal of Alloys and Compounds.,2009,481,p.786–791
[62] J. HERZLER and P. ROTH, "HIGH-TEMPERATURE DECOMPOSITION OF TiCl4 BASED ON Cl-CONCENTRATION MEASUREMENTS." Proceedings of the Combustion Institute., 2002,29,p.1353–1359
[63] SHI Lei, WENG Duan, "Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity." Journal of Environmental Sciences.,2008,20,p.1263–1267
[64] Cong-hua Zhou, Sheng Xu, Ying Yang, Bing-chu Yang, Hao Hu, Zu-ci Quan, Bobby Sebo,Bo-lei Chen, Qi-dong Tai, Zhen-hua Sun, Xing-zhong Zhao, "Titanium dioxide sols synthesized by hydrothermal methods using tetrabutyl titanate as starting material and the application in dye sensitized solar cells." Electrochimica Acta.,2011,56, p.4308– 4314
[65] Kangle Lv, Quanjun Xiang, Jiaguo Yu, "Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets." Applied Catalysis B: Environmental,2011,104,p. 275–281
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top