跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖丰
研究生(外文):Wang, SHENG-FENG
論文名稱:梳狀結構長週期光纖光柵於應變及磁場感測之應用
論文名稱(外文):Application of Strain and Magnetic Sensing based on the Comb-type Long-period Fiber Grating
指導教授:江家慶江家慶引用關係陳道星
指導教授(外文):CHIANG, CHIA-CHINCHEN, TAO-HSING
口試委員:陳文立傅明宇徐慶瑜江家慶陳道星
口試委員(外文):CHEN, WEN-LIHFU, MING-YUEHSU, CHING-YUCHIANG, CHIA-CHINCHEN, TAO-HSING
口試日期:2016-06-29
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:118
中文關鍵詞:黃光微影製程電鑄製程長週期光纖光柵感測器
外文關鍵詞:lithography techniqueelectroforminglong-period fiber gratingsensor
相關次數:
  • 被引用被引用:5
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本文運用微機電製程技術中之黃光微影製程搭配SU-8 3050負型光阻、完成BOE蝕刻之光纖及PDMS高分子材料,製作出梳狀封裝型長週期光纖光柵感測器(Packaged Comb-type Long-Period Fiber Grating, PCLPFG),作為量測軸向拉伸力與徑向拉伸應變感測器,接著再以電鑄製程將鎳金屬沉積於光阻圖案結構中,製作出梳狀金屬型長週期光纖光柵感測器(Metallic Comb-type Long-Period Fiber Grating, MCLPFG),作為量測磁通量之磁場感測器。
本文製作之梳狀封裝型長週期光纖光柵感測器係在感測器外塗覆一層PDMS高分子材料,目的在於防止黏膠等外在干擾因素,提高感測器與待測物之相容性。首先,將梳狀封裝型長週期光纖光柵固定於微動平台及荷重元上,進行軸向拉伸實驗;接著,將光纖光柵表貼於鋁片上,運用四點彎曲裝置,進行橫向拉伸實驗。為確認感測器穩定性與再現性,進行三循環軸向拉伸量測實驗。實驗結果顯示,當梳狀封裝型長週期光纖光柵受軸向與橫向拉伸負載作用時,隨著拉伸負載作用增強,其傳輸損耗現象滿足耦合理論公式,呈現一餘弦函數平方變化,且傳輸損耗與軸向拉伸作用力、橫向拉伸應變較具線性關係。光柵週期長度600 μm,受高拉伸力作用時,擁有最大靈敏度為-53.892 dB/N。光柵週期長度620 μm,擁有橫向應變最大靈敏度為0.00946 dB/με。證明本文所開發之梳狀封裝型長週期光纖光柵感測器能夠應用於軸向與橫向拉伸量測。
本文磁場感測實驗是將具梳狀金屬結構之長週期光纖光柵感測器先行固定於微動平台及荷重元上,運用釹鐵硼磁鐵(NdFeB Magnet)與感測器之徑向垂直距離控制磁通量大小,磁通量強度利用高斯計即時監測,分析感測器在不同磁通量下的光頻譜變化。運用磁鐵產生磁場效應可完全排除溫度對本實驗的影響。由實驗結果得知,在外部磁場負載下,對鎳金屬結構產生磁吸力,引發週期性金屬結構應變發生改變,導致光柵週期結構折射率發生擾動,進而引起耦合係數發生變異,傳輸損耗則逐漸增強或減弱。感測器於光纖週期長度630 μm時,磁場靈敏度可達0.04528 dB/Gauss,證明本文所開發之梳狀金屬型長週期光纖光柵感測器能夠應用於磁場感測。
In this paper, we utilize lithography technique along with etched optical fibers and SU-8 3050 photoresist to product long-period fiber grating (LPFG). The periodic comb-type structure of photoresist is patterned onto the LPFG. Then, we adopt the PDMS, which is a kind of polymeric organosilicon compound, to coat the grating structure of LPFG, and the packaged comb-type LPFG (PCLPFG) is fabricated. Subsequently, we use the electroforming process to deposit the nickel within the patterned periodic structure and we will obtain the metallic comb-type LPFG (MCLPFG).
First, we use the PCLPFG sensors to detect the variations of the longitudinal and transverse loading. According to the results of the experiments, we can find that when the longitudinal and transverse loading are strengthen, the phenomenon of the transmission loss agrees with the coupled-mode theory and the dips of transmission loss perform as a quadratic function of cosine. We also execute the experiment of the axial loading test for three times to ensure the feasibility and reproducibility of the proposed optical fiber grating sensors. The better sensitivities of sensors are -53.892 dB/N and 0.00946dB/με, and the corresponding period of the fiber gratings are 600 and 620 μm.
During the process of the magnetic field sensing experiment, we use the MCLPFG sensors to detect the strength of external applied magnetic field. In order to avoid thermal effect, we employ the NdFeB magnet to generate the magnetic field. The strength of magnetic flux density is determined by adjusting the vertical distance between the NdFeB magnet and metallic grating structure of MCLPFG. We also use the Gaussmeter to execute the real-time probing of the magnetic flux density. According to the results of the experiments, we can find that when the magnetic flux density is strengthen, the magnetic force would attract the metallic grating structure and induce the variation of strain induced refractive index. The phenomenon of the transmission loss agrees with the coupled-mode theory and the dips of transmission loss would descend or ascend. The best sensitivity is 0.04528 dB/Gauss at the grating period of 630 μm.
致謝 I
摘要 II
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XIII
符號表 XIV
第一章、緒論 1
1-1研究動機 1
1-2研究背景 2
1-2.1長週期光纖光柵製程回顧 2
1-2.2長週期光纖光柵應變量測文獻回顧 3
1-2.3長週期光纖光柵磁場感測文獻回顧 6
1-3研究目的 10
第二章、長週期光纖光柵基礎理論 30
2-1 長週期光纖光柵基本原理 30
2-2長週期光纖光柵耦合模態理論(Coupled-mode Theory)分析 32
2-2.1 耦合模態理論 32
2-2.2 光阻型長週期光纖光柵之耦合特性探討 38
第三章、研究方法與步驟 47
3-1光纖蝕刻方法與步驟 47
3-2長週期光纖光柵感測器製程方法與步驟 47
3-2.1梳狀封裝型長週期光纖光柵(PCLPFG)製程 47
3-2.2梳狀金屬型長週期光纖光柵(MCLPFG)製程 50
3-3實驗方法與步驟 52
3-3.1梳狀封裝型長週期光纖光柵軸向拉伸感測 52
3-3.2梳狀封裝型長週期光纖光柵徑向拉伸感測 53
3-3.3梳狀金屬型長週期光纖光柵磁場感測 54
第四章、實驗結果與討論 60
4-1梳狀封裝型長週期光纖光柵實驗結果與討論 60
4-1.1 軸向拉伸量測實驗結果與討論 60
4-1.1-1光柵週期長度: 600 μm 60
4-1.1-2光柵週期長度: 610 μm 62
4-1.1-3光柵週期長度: 620 μm 63
4-1.1-4光柵週期長度: 630 μm 64
4-1.1-5 軸向拉伸實驗結果綜合分析 65
4-1.2橫向拉伸量測實驗結果與討論 66
4-1.2-1光柵週期長度: 600 μm 66
4-1.2-2光柵週期長度: 610 μm 67
4-1.2-3光柵週期長度: 620 μm 67
4-1.2-4光柵週期長度: 630 μm 68
4-1.2-5橫向拉伸實驗結果綜合分析 68
4-1.3三循環軸向拉伸量測實驗結果與討論 69
4-1.3-1 光柵週期長度: 600 μm 70
4-1.3-2 光柵週期長度: 610 μm 70
4-1.3-2 光柵週期長度: 620 μm 71
4-1.3-3 光柵週期長度: 630 μm 71
4-2梳狀金屬型長週期光纖光柵磁場感測實驗結果與討論 72
4-2.1磁場感測實驗結果與討論 73
4-2.1-1光柵週期長度: 600 μm 73
4-2.1-2光柵週期長度: 610 μm 74
4-2.1-3光柵週期長度: 620 μm 74
4-2.1-4光柵週期長度: 630 μm 75
4-2.1-5 磁場感測實驗結果綜合分析 76
第五章、結論 90
5-1梳狀封裝型長週期光纖光柵軸向及徑向拉伸實驗結果與討論 90
5-2梳狀金屬型長週期光纖光柵磁場感測實驗結果與討論 91
第六章、未來展望 92
參考文獻 93
著作清單 101

[1] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," Journal of lightwave technology, vol. 14, pp. 58-65, 1996.
[2] A. M. Vengsarkar, N. S. Bergano, C. R. Davidson, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, "Long-period fiber-grating-based gain equalizers," Optics Letters, vol. 21, pp. 336-338, 1996.
[3] V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Optics Letters, vol. 21, pp. 692-694, 1996.
[4] C. Lin and L. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electronics Letters, vol. 35, pp. 1872-1873, 1999.
[5] C.Y. Lin, G.W. Chern, and L. A. Wang, "Periodical Corrugated Structure for Forming Sampled Fiber Bragg Grating and Long-Period Fiber Grating with Tunable Coupling Strength," Journal of Lightwave Technology, vol. 19, pp. 1212, 2001.
[6] C. Y. Huang, W. L. Chan, S. M. Chuo, J. H. Chang, L. L. Chen, and L. A. Wang, "Packaged symmetric/asymmetric corrugated long period fiber gratings for refractive index sensing applications," in 20th International Conference on Optical Fibre Sensors, 2009, pp. 75031C-75031C-4.
[7] I. K. Hwang, S. H. Yun, and B. Y. Kim, "Long-period fiber gratings based on periodic microbends," Optics Letters, vol. 24, pp. 1263-1265, 1999.
[8]A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, "Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings," Applied optics, vol. 42, pp. 3776-3779, 2003.
[9] S. Savin, M. Digonnet, G. Kino, and H. Shaw, "Tunable mechanically induced long-period fiber gratings," Optics Letters, vol. 25, pp. 710-712, 2000.
[10] M. Yokota, H. Oka, and T. Yoshino, "Mechanically induced long period fiber grating and its application for distributed sensing," in Optical Fiber Sensors Conference Technical Digest, 2002. Ofs 2002, 15th, 2002, pp. 135-138.
[11] G. Cárdenas-Sevilla, D. Monzón-Hernández, I. Torres-Gomez, and A. Martinez-Rios, "Mechanically induced long-period fiber gratings on tapered fibers," Optics Communications, vol. 282, pp. 2823-2826, 2009.
[12] B. Rout, C. Cher, K. J. Grant, A. Roberts, and D. N. Jamieson, "Ion beam implantation for fabrication of periodic structures in optical fibres," in SPIE's International Symposium on Smart Materials, Nano-, and Micro-Smart Systems, 2002, pp. 172-177.
[13] Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, "Electrically controllable long-period liquid crystal fiber gratings," IEEE Photonics Technology Letters, vol. 12, pp. 519-521, 2000.
[14] Y.J. Rao, Y.P. Wang, Z.L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," Journal of Lightwave Technology, vol. 21, pp. 1320-1327, 2003.
[15] Y.P. Wang, W. Jin, and D. Wang, "Strain characteristics of CO2-laser-carved long period fiber gratings," IEEE Journal of Quantum Electronics, vol. 43, pp. 101-108, 2007.
[16] H. Jung, Y. G. Seo, W. Ha, D.K. Kim, S. H. Park, and K. Oh, "Mask-free hybrid long-period fiber grating fabrication by self-assembled periodic polymerization in silica hollow optical fiber," Optics letters, vol. 34, pp. 2745-2747, 2009.
[17] T. Mizunami, Y. Sho, K. Yamamoto, and Y. Ishida, "Long-period fiber-gratings produced by exposure with a low-pressure mercury lamp and their sensing characteristics," Optics Communications, vol. 282, pp. 4699-4705, 2009.
[18] C. C. Chiang, T. C. Cheng, H. J. Chang, and L. Tsai, "Sandwiched long-period fiber grating filter based on periodic SU8-thick photoresist technique," Optics letters, vol. 34, pp. 3677-3679, 2009.
[19] H. J. Kim, O.J. Kwon, S. Chu, M.S. Yoon, G. Kim, S. B. Lee, et al., "Fabrication of a surface long-period fiber grating based on a D-shaped photonic crystal fiber," in 2009 14th OptoElectronics and Communications Conference, 2009, pp. 1-2.
[20] C. C. Chiang, "Fabrication and characterization of sandwiched optical fibers with periodic gratings," Applied optics, vol. 49, pp. 4175-4181, 2010.
[21] C. C. Chiang and C.H. Li, "A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating," Optics express, vol. 22, pp. 13916-13926, 2014.
[22] B. Li, L. Jiang, S. Wang, H.L. Tsai, and H. Xiao, "Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing," Optics & Laser Technology, vol. 43, pp. 1420-1423, 2011.
[23] X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z.J. Liu, et al., "Point-by-Point Dip Coated Long-Period Gratings in Microfibers," Photonics Technology Letters, IEEE, vol. 26, pp. 2503-2506, 2014.
[24] Z. Bai, W. Zhang, S. Gao, H. Zhang, L. Wang, and F. Liu, "Bend-insensitive long period fiber grating-based high temperature sensor," Optical Fiber Technology, vol. 21, pp. 110-114, 2015.
[25] C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," Journal of Lightwave Technology, vol. 19, pp. 1159-1168, 2001.
[26] Y. P. Wang, L. Xiao, D. Wang, and W. Jin, "Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity," Optics letters, vol. 31, pp. 3414-3416, 2006.
[27] C. L. Zhao, L. Xiao, J. Ju, M. Demokan, and W. Jin, "Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor," Journal of Lightwave Technology, vol. 26, pp. 220-227, 2008.
[28] P. Caldas, G. Rego, O. V. Ivanov, and J. L. Santos, "Characterization of the response of a dual resonance of an arc-induced long-period grating to various physical parameters," Applied optics, vol. 49, pp. 2994-2999, 2010.
[29] Z. Xin, S. Changyu, C. Jinlei, and Z. Chuan, "Long-Period Fiber Grating Based Cantilever Strain Sensor," in Photonics and Optoelectronics (SOPO), 2012 Symposium on, 2012, pp. 1-3.
[30] T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, "Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids," Applied Physics Letters, vol. 91, pp. 121116-1-121116-3, 2007.
[31] S. Thomas, J. Mathew, P. Radhakrishnan, V. Nampoori, A. George, S. Al-Harthi, et al., "Metglas thin film based magnetostrictive transducers for use in long period fibre grating sensors," Sensors and Actuators A: Physical, vol. 161, pp. 83-90, 2010.
[32] L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, et al., "Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection," Photonics Journal, IEEE, vol. 4, pp. 2095-2104, 2012.
[33] Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, et al., "Ferrofluid-infiltrated microstructured optical fiber long-period grating," IEEE Photonics Technology Letters, vol. 25, pp. 306-309, 2013.
[34] N. M. Y. Zhang, X. Dong, P. P. Shum, D. J. J. Hu, H. Su, W. S. Lew, et al., "Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating," Journal of Optics, vol. 17, pp. 065402, 2015.
[35] Y. Miao, X. Ma, J. Lin, B. Song, W. Lin, H. Zhang, et al., "Intensity-based magnetic field measurement employing tilted long-period fiber gratings," Journal of Optics, vol. 17, pp. 105609, 2015.
[36] T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, vol. 15, pp. 1277-1294, 1997.
[37] S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Measurement science and technology, vol. 14, pp. R49, 2003.
[38] D. Marcuse, Theory of dielectric optical waveguides: Elsevier, 2013.
[39] H. Kogelnik, "Theory of optical waveguides," in Guided-wave optoelectronics, ed: Springer, 1988, pp. 7-88.
[40] T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," JOSA A, vol. 14, pp. 1760-1773, 1997.
[41] J. Seligson, "The orthogonality relation for TE-and TM-modes in guided-wave optics," Journal of Lightwave Technology, vol. 6, pp. 1260-1264, 1988.
[42] J. F. Nye, Physical properties of crystals: their representation by tensors and matrices: Oxford university press, 1985.
[43] G. Berruti, M. Consales, A. Borriello, M. Giordano, S. Buontempo, G. Breglio, et al., "High-sensitivity metal oxides-coated long-period fiber grating sensors for humidity monitoring in high-energy physics applications," in SPIE Photonics Europe, 2014, pp. 914114-914114-9.
[44] M. Perry, P. Niewczas, M. Johnston, and J. Mackersie, "Nickel plating of FBG strain sensors for nuclear applications," in 21st International Conference on Optical Fibre Sensors (OFS21), 2011, pp. 77538G-77538G-4.
[45] K. Mohanchandra, S. Karnani, M. Emmons, W. Richards, and G. Carman, "Thin film NiTi coatings on optical fiber Bragg sensors," Applied Physics Letters, vol. 93, pp. 031914, 2008.
[46] Y. Feng, H. Zhang, Y.L.Li, and C.F. Rao, "Temperature sensing of metal-coated fiber Bragg grating," Mechatronics, IEEE/ASME Transactions on, vol. 15, pp. 511-519, 2010.
[47] C. Rao, H. Zhang, Y. Feng, L. Xiao, and Z. Ye, "Thick metal coating long-period fiber grating," in 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2012), 2012, pp. 84181Q-84181Q-6.
[48] B. Q. Jiang and Z. Q. Xiao, "Preparation and Thermodynamics of Nickel-Phosphor Deposition on Surface of Quartz Optical Fiber by Electroless Plating," in Advanced Materials Research, 2011, pp. 432-435.
[49] Y. Li, Z. Hua, F. Yan, and P. Gang, "Metal coating of fiber Bragg grating and the temperature sensing character after metallization," Optical Fiber Technology, vol. 15, pp. 391-397, 2009.
[50] M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, "An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating," Optics express, vol. 20, pp. 8472-8484, 2012.
[51] Y. Sawa, K. Yamashita, T. Kitadani, D. Noda, and T. Hattori, "Fabrication of High Hardness Micro Mold Using Double Layer Nickel Electroforming," International Symposium on Micro-NanoMechatronics and Human Science, 2008, pp. 402-407.
[52] H. Yang and S.W. Kang, "Improvement of thickness uniformity in nickel electroforming for the LIGA process," International Journal of Machine Tools and Manufacture, vol. 40, pp. 1065-1072, 2000.
[53] Z.J. Wei, Y.Y. Wang, C.C. Wan, and C.H. Huang, "Study of wetters in nickel electroforming of 3D microstructures," Materials Chemistry and Physics, vol. 63, pp. 235-239, 2000.
[54] 林楷翔, "具金屬結構之長週期光纖光柵製作與應用, 國立高雄應用科技大學機械系碩士論文," 2015.
[55] O. V. Ivanov, "Fabrication of long-period fiber gratings by twisting a standard single-mode fiber," Optics letters, vol. 30, pp. 3290-3292, 2005.
[56] M. Konstantaki, A. Candiani, and S. Pissadakis, "Optical fibre long period grating spectral actuators utilizing ferrofluids as outclading overlayers," Journal of the European Optical Society-Rapid publications, vol. 6, 2011.
[57] Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, et al., "Refractive index and strain sensitivities of a long period fiber grating," Photonic sensors, vol. 4, pp. 92-96, 2014.
[58] J. Chu, C. Shen, F. Qian, C. Zhong, X. Zou, X. Dong, et al., "Simultaneous measurement of strain and temperature based on a long-period grating with a polarization maintaining fiber in a loop mirror," Optical Fiber Technology, vol. 20, pp. 44-47, 2014.
[59] Q. Huang, Y. Yu, S. Ruan, X. Li, X. Chen, Y. Zhang, et al., "In-Fiber Grating Fabricated by Femtosecond Laser Direct Writing for Strain Sensing," IEEE Photonics Technology Letters, vol. 27, pp. 1216-1219, 2015.
[60] H. Zeng, T. Geng, W. Yang, M. An, J. Li, F. Yang, et al., "Combining Two Types of Gratings for Simultaneous Strain and Temperature Measurement," IEEE Photonics Technology Letters, vol. 28, pp. 477-480, 2016.
[61] L. Zhang, Y. Liu, X. Cao, and T. Wang, "High Sensitivity Chiral Long-Period Grating Sensors Written in the Twisted Fiber," IEEE Sensors Journal, vol. 16, pp. 4253-4257, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊