跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃雅欣
研究生(外文):Ya-Sin Huang
論文名稱:以化學沉澱法合成氧化銅奈米結構於葡萄糖感測之應用
論文名稱(外文):Formation of Copper Oxide Nanostructures Using Chemical Precipitation and Their Applications in Non-enzymatic Glucose Sensors
指導教授:林建宏林建宏引用關係
指導教授(外文):Jarrn-Horng Lin
口試委員:林弘萍呂英治
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:氧化銅氫氧化銅氧化亞銅奈米線結構奈米片結構化學沉澱法葡萄糖感測器
相關次數:
  • 被引用被引用:1
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用化學沉澱法合成氧化銅奈米結構,其製備過程容易,不需添加劑,在常溫常壓下即可大量製造(產率約75 %)。利用前驅物間的化學反應,控制反應溫度和時間,可得到不同形貌。在室溫下(23.5 ± 1.5 ℃),生成時間約2-5分鐘,就能形成長度約數十微米、直徑約25-50奈米的氫氧化銅奈米線,將放置時間延長 (從一天到九天),生成物會由氫氧化銅(Cu(OH)2)轉變成氧化銅(CuO),形貌由奈米線(Nanowires)轉變為奈米片狀結構(Nanoslabs),寬度約1-1.5微米。若改變靜置溫度(從室溫提升至50 ℃),奈米線轉變成奈米片狀結構的過程將從9天縮短至4小時,且為相同的氧化銅結構。利用Brunauer-Emmett-Teller方法偵測奈米線和奈米片狀結構之比表面積,分別為35.38 m2/g及15.75 m2/g。此外,變更前驅添加順序以及提升氨水濃度,能得到奈米束及海膽狀形貌的氫氧化銅結構,主要是定向性成長導致。接著測試氫氧化銅奈米線以及氧化銅奈米片狀結構的熱穩定性,發現加熱至400 ℃,依然保持原本形貌,當溫度升至600 ℃,形成塊狀結構,而在800 ℃皆轉變為氧化亞銅組成的塊狀結構,且由X-ray粉末繞射儀可知為立方體結構,其比表面積,隨溫度增加至800 ℃,分別遞減至0.42 m2/g和0.13 m2/g。氧化銅結構能有效提升葡萄糖感測之電化學性能,相較於不同形貌結構,其中以氧化銅奈米線的表現較出色,其偵測範圍為0.05-1 mM,靈敏度則是229.6 µAcm-2mM-1,具有良好的準確度且能大量製造,因此有助於無葡萄糖氧化酵素酶電化學感測商業化發展。
The preparations of the metal oxide nanostructures have been studied, on account of their unique size, dimension and chemicophysical properties. Here, we report the formation of copper-based nanostructures using chemical precipitation. The chemical precipitation method can produce copper hydroxide (Cu(OH)2) nanowires and cupric oxide (CuO) nanoslabs without surfactants as well as a high yield (approximately 75 %). Through changing reaction temperature and aging of synthisis process, we can produce different morphologies of nanostructures. The originally generated copper-based nanostructures using chemical precipitation at room temperature (about 23.5 ± 1.5 ℃) was copper hydroxide (Cu(OH)2) nanowires with approximately 50 nm in diameter and several micrometers in length. However, the transformation of Cu(OH)2 nanowires into CuO nanoslabs was observed when the samples aged at room temperature from 24 (started) to 216 hours (fully finished). Additionally, if reaction temperature increased to 50 oC, we found that time of transformation was shorten to 4hours and got the same nanoslab structures. Through Brunauer-Emmett-Teller method, the specific surface area of Cu(OH)2 nanowires and CuO nanoslabs were 35.38 and 15.75 m2/g, respectively. We also produced nano bondle and urchin-like copper hydroxide nanostructures when we changed add-ordring of percusors and increased concentration of ammonia. The as-grown Cu-based nanostructures are sensitive to thermal treatments (400-800 oC). Therefore, the specific surface areas of the heat-treated nanowires significantly reduced from 35.4 to 0.4 m2/g and nanoslabs also reduced from 19.6 to 0.1 m2/g. Nanowires and nanoslabs remained their structures below 400 ℃ and transformed into block structures above 600 ℃. The X-ray diffraction spectrum demonstrated the composition of block stucture about temperature of heat treament at 800 ℃ is cuprous oxide. Additionally, the CuO nanowires show better electrochemical property than other nanostructures. In the amperometric detection of glucose, the CuO nanowires modified copper electrode exhibited a range between 0.05-1 mM with sensitivity of 229.6 µAcm-2mM-1. The CuO nanowires have good accuracy and high precision for the quantification of glucose concentration so that it could be applied to commerical non-enzymatic glucose sensors.
中文摘要………………………………………………………………………………….…....i
英文摘要………………………………………………………………...……………..…....iii
致謝 .…………………………………………………………………………...……….….. iv
目錄 ………………………………………………………………………………….……....v
表目錄……………………………………………………………………………….....…..vii
圖目錄……………………………………………………………………………….…….viii

第一章 緒論………………………………………………………………………………….1
第一節 前言…………………………………………………………………….…1
一 奈米銅氧化物介紹………………………………………………………..….1
第二章 文獻探討與回顧…………………………………………………………………...5
第一節 奈米銅氧化物之合成方法………………………………………….……5
一 水熱法…………………………………………………………………….…..5
二 化學沉澱法………………………………………………………………..….9
三 電化學法………………...………………………………….……………….12
四 熱氧化法…………………………………………….………………...…….13
第二節 奈米銅氧化物之成長機制………………………………………...……16
一 定向性吸附………………………………….………………………..……16
二 奧斯瓦爾德熟化……………………………….……………………..……17
三 自組裝………………………………………...…..………………………..18
第三節 葡萄糖感測器之發展…………………………………………………...21
第四節 研究目的與動機………………………………………...……………....23
第三章 實驗方法
第一節 以化學沉澱法合成氧化銅奈米結構….………………………...….…24
一 實驗材料…………………………………………………………..………...24
二 反應系統……………………………………………………...……………..24
三 實驗步驟………………………………………………………………..…...26
四 儀器鑑定……………………………………………………………..……...27
第二節 氧化銅奈米線/奈米片應用於無葡萄糖氧化酵素酶電化學感測......…28
一 實驗材料…………………………………..………………………..……….28
二 工作電極製作……………………………………..…………………..…….28
三 電化學量測……………………………………………..………..………….29
第四章 結果與討論………………………………………………..……………………...30
第一節 合成氫氧化銅奈米線和氧化銅奈米片……………………………..….30
一 時間效應的探討…………………………………………………..………….30
二 溫度效應的探討…………………………………………………………..….34
三 前驅物添加順序的探討………………………………………………...……35
四 濃度效應的探討……………………………………………………..……….38
第二節 奈米線及奈米片熱穩定性的探討……………………………………...40
一 奈米線熱穩定效應之探討…………………………………………………...40
二 奈米片熱穩定效應之探討……………………………………….......………43
第三節 氧化銅奈米線/奈米片應用於無葡萄糖氧化酵素酶電化學感測…..…47
一 氧化銅奈米線應用於無葡萄糖氧化酵素酶電化學感測之探討………...…47
二 氧化銅奈米片應用於無葡萄糖氧化酵素酶電化學感測之探討…………...52
第五章、結論………………………………………………………………………………….57
第六章、參考文獻…………………………………………………………………………….58

[1]H. Gleiter, "Nanostructured Materials," Advanced Materials, vol. 4, pp. 474-481, 1992.
[2]M. P. Neupane, Y. K. Kim, I. S. Park, K. A. Kim, M. H. Lee, and T. S. Bae, "Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles," Surface and Interface Analysis, vol. 41, pp. 259-263, 2009.
[3]Z. Yan, J. Shu, Y. Yu, Z. Zhang, Z. Liu, and J. Chen, "Preparation of carbon quantum dots based on starch and their spectral properties," Luminescence, vol. 30, pp. 388-92, Jun 2015.
[4]M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang, "A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods," Chemical Communications, p. 1884, 2003.
[5]S. lijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[6]L. Wang, K. Zhang, Z. Hu, W. Duan, F. Cheng, and J. Chen, "Porous CuO nanowires as the anode of rechargeable Na-ion batteries," Nano Research, vol. 7, pp. 199-208, 2013.
[7]H. J. Park, J. Meyer, S. Roth, and V. Skákalová, "Growth and properties of few-layer graphene prepared by chemical vapor deposition," Carbon, vol. 48, pp. 1088-1094, 2010.
[8]R. Dang, L. Song, W. Dong, C. Li, X. Zhang, G. Wang, et al., "Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics," ACS Applied Materials & Interfaces vol. 6, pp. 622-629, Jan 8 2014.
[9]Q. Zhang, K. Zhang, D. Xua, G. Yang, H. Huang, F. Nie, et al., "CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications," Progress in Materials Science, vol. 60, pp. 208–337, 2014.
[10]A. Li, H. Song, W. Wan, J. Zhou, and X. Chen, "Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries," Electrochimica Acta, vol. 132, pp. 42-48, 2014.
[11]X. Li and C. Wang, "Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application," Journal of Materials Chemistry A, vol. 1, pp. 165-182, 2013.
[12]V. V. Kislyuk and O. P. Dimitriev, "Nanorods and nanotubes for solar cells," Journal of Nanoscience and Nanotechnology, vol. 8, pp. 131-148, 2008.
[13]X. Zhang, W. Shi, J. Zhu, D. J. Kharistal, W. Zhao, B. S. Lalia, et al., "High power and high energy density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes," ACS Nano, vol. 5, pp. 5280-5280, 2011.
[14]F. Shi, L. Li, X. Wang, C. Gu, and J. Tu, "Metal oxide/hydroxide-based materials for supercapacitors," RSC Advances, vol. 4, pp. 41910-41921, 2014.
[15]M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, "A comprehensive review of glucose biosensors based on nanostructured metal-oxides," Sensors, vol. 10, pp. 4855-86, 2010.
[16]B. J. Hansen, N. Kouklin, G. Lu, I.-K. Lin, J. Chen, and X. Zhang, "Transport, Analyte Detection, and Opto-Electronic Response of p-Type CuO Nanowires," Journal of Physical Chemistry C, vol. 114, pp. 2440-2447, 2010.
[17]C. Li, M. Kurniawan, D. Sun, H. Tabata, and J. J. Delaunay, "Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing," Nanotechnology, vol. 26, p. 015503, Jan 9 2015.
[18]G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan, and X. Shen, "Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures," ACS Applied Materials & Interfaces vol. 4, pp. 744-751, 2012.
[19]B. J. Hansen, N. Kouklin, G. Lu, I.-K. Lin, J. Chen, and X. Zhang, "Transport, analyte detection, and opto-electronic response of p-type CuO nanowires," Journal of Physical Chemistry C, vol. 144, pp. 2440–2447, 2010.
[20]L. P. Zhou, B. X. Wang, X. F. Peng, X. Z. Du, and Y. P. Yang, "On the Specific Heat Capacity of CuO Nanofluid," Advances in Mechanical Engineering, vol. 2, pp. 172085-172085, 2015.
[21]Y. W. Zhu, A. M. Moo, T. Yu, X. J. Xu, X. Y. Gao, Y. J. Liu, et al., "Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires," Chemical Physics Letters, vol. 419, pp. 458-463, 2006.
[22]H. Yu, J. Yu, S. Liu, and S. Mann, "Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres," Chemistry of Materials, vol. 19, pp. 4327-4334, 2007.
[23]A. Cao, J. D. Monnell, C. Matranga, J. Wu, L. Cao, and D. Gao, "Hierarchical nanostructured copper oxide and Its Application in Arsenic Removal," Journal of Physical Chemistry C, vol. 111, pp. 18624-18628, 2007.
[24]T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, "Single-crystal growth and characterization of Cu2O and CuO," Jouanal of Materials Science, vol. 33, pp. 3555-3566, 1998.
[25]A. H. Jayatissa, K. Guo, and A. C. Jayasuriya, "Fabrication of cuprous and cupric oxide thin films by heat treatment," Applied Surface Science, vol. 255, pp. 9474-9479, 2009.
[26]R. Khan, M. Vaseem, L.-W. Jang, J.-H. Yun, Y.-B. Hahn, and I.-H. Lee, "Low temperature preparation of CuO nanospheres and urchin-shaped structures via hydrothermal route," Journal of Alloys and Compounds, vol. 609, pp. 211-214, 2014.
[27]C. Ma, LianjieZhu, S. Chen, and Y. Zhao, "Simple and rapid preparation of CuO nanowires and their optical properties," Materials Letters, vol. 108, pp. 114-117, 2013.
[28]C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, and J. Ma, "Simple Template-free solution route for the controlled synthesis of Cu(OH)2 and CuO Nanostructures," Journal of Physical Chemistry B vol. 108, pp. 17825-17831, 2004.
[29]A. Daltin, A. Addad, and J. Chopart, "Potentiostatic deposition and characterization of cuprous oxide films and nanowires," Journal of Crystal Growth, vol. 282, pp. 414-420, 2005.
[30]X. Jiang, T. Herricks, and Y. Xia, "CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air," Nano Letters vol. 2, pp. 1333-1338, 2002.
[31]U. Chen, Y. Chueh, S. Lai, L. Chou, and H. Shih, "Synthesis and characterization of self-catalyzed CuO nanorods on Cu/TaN/Si assembly using vacuum-arc Cu deposition and vapor-solid reaction," Journal of Vacuum Science & Technology B, vol. 24, pp. 139-142, 2006.
[32]P. Mallick and S. Sahu, "Structure, Microstructure and Optical Absorption Analysis of CuO Nanoparticles Synthesized by Sol-Gel Route," Nanoscience and Nanotechnology, vol. 2, pp. 71-74, 2012.
[33]R. Sahay, P. S. Kumar, V. Aravindan, J. Sundaramurthy, W. C. Ling, S. G. Mhaisalkar, et al., "High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability," Journal of Physical Chemistry C, vol. 116, pp. 18087-18092, 2012.
[34]S. Chakraborty, A. Das, M. R. Begum, S. Dhara, and A. K. Tyagi, "Vibrational Properties of CuO Nanoparticles Synthesized By Hydrothermal Technique," AIP Conference Proceedings, vol. 166, pp. 947-953, 2011.
[35]K. M. Shrestha, C. M. Sorensen, and K. J. Klabunde, "Synthesis of CuO Nanorods, Reduction of CuO into Cu Nanorods, and Diffuse Reflectance Measurements of CuO and Cu Nanomaterials in the Near Infrared Region," Journal of Physical Chemistry C vol. 114, pp. 14368-14376 2010.
[36]Z. Zhuang, Q. Peng, and Y. Li, "Controlled synthesis of semiconductor nanostructures in the liquid phase," Chemical Society Reviews, vol. 40, pp. 5492-513, Nov 2011.
[37]J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, and L. Lu, "CuO nanocrystals with controllable shapes grown from solution without any surfactants," Materials Chemistry and Physics, vol. 109, pp. 34-38, 2008.
[38]R. V. Kumar, Y. Diamant, and A. Gedanken, "Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates," Chemistry of Materials, vol. 12, pp. 2301–2305, 2000.
[39]J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, and X. Wang, "Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method," Materials Letters, vol. 58, pp. 3324-3327, 2004.
[40]K. Zhou, R. Wang, B. Xu, and Y. Li, "Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes," Nanotechnology, vol. 17, pp. 3939-3943, 2006.
[41]L. B. Chen, L. N., X. C.M., Y. H.C., and W. T.H., "Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries," Electrochimica Acta, vol. 54, pp. 4198-4201, 2009.
[42]A. S. Ethiraj and D. J. Kang, "Synthesis and characterization of CuO nanowires by a simple wet chemical method," Nanoscale Res Lett, vol. 7, p. 70, 2012.
[43]Y. Li, X. Y. Yang, J. Rooke, G. V. Tendeloo, and B. L. Su, "Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance," Journal of Colloid and Interface Science, vol. 348, pp. 303-312, 2010.
[44]S. Sun, X. Zhang, J. Zhang, L. Wang, X. Song, and Z. Yang, "Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances," CrystEngComm vol. 15, pp. 867-877, 2013.
[45]G. Q. Yuan, H. F. Jiang, C. Lin, and S. J. Liao, "Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals," Journal of Crystal Growth, vol. 303, pp. 400-406, 2007.
[46]M. Xu, F. Wang, B. Ding, X. Song, and J. Fang, "Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties," RSC Advances, vol. 2, p. 2240, 2012.
[47]B. Toboonsung and P. Singjai, "Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process," Journal of Alloys and Compounds, vol. 509, pp. 4132-4137, 2011.
[48]A. Kumar, A. K. Srivastava, P. Tiwari, and R. V. Nandedkar, "The effect of growth parameters on the aspect ratio and number density of CuO nanorods," Journal of Physics: Condensed Matter, vol. 16, pp. 8531-8543, 2004.
[49]R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, "Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper," Chemical Physics Letters, vol. 512, pp. 87-91, 2011.
[50]K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J. Y. Chane-Ching, "Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate," Nanotechnology, vol. 18, p. 275607, 2007.
[51]Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, and M. Han, "Three-dimensionally oriented aggregation of a few hundred nanoparticles," Advanced Materials, vol. 17, pp. 42-47, 2005.
[52]H. Xu, W. Wang, W. Zhu, L. Zhou, and M. Ruan, "Hierarchical-oriented attachment: from one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves," Crystal Growth & Design, vol. 7, pp. 2720-2724, 2007.
[53]Y. Li, B. Tan, and Y. Wu, "Ammonia-evaporation-induced synthetic method for metal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures," Chemistry of Materials vol. 20, pp. 567-576, 2008.
[54]K. Morgenstern, G. Rosenfeld, and G. Comsa, "Local correlation during Ostwald ripening of two-dimensional islands on Ag(111)," Surface Science, vol. 441, pp. 289-300, 1999.
[55]G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, "Well-aligned arrays of CuO nanoplatelets," Journal of Physical Chemistry B, vol. 110, pp. 1632-1637 2006.
[56]Y. Chang and H. C. Zeng, "Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons," Crystal Growth & Design, vol. 4, pp. 397-402, 2004.
[57]J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang, and S. J. Shi, "Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 313-319, 2010.
[58]K. Tian, M. Prestgard, and A. Tiwari, "A review of recent advances in nonenzymatic glucose sensors," Mater Sci Eng C, vol. 41, pp. 100-18, Aug 1 2014.
[59]D. Pletcher, "Electrocatalysis: present and future," Journal of Applied Electrochemistry, vol. 14, pp. 403-415, 1984.
[60]L. D.Burke, "Premonolayer oxidation and its role in electrocatalysis," Electrochimica Acta, vol. 39, pp. 1841-1848, 1994.
[61]G. Wang, Y. Wei, W. Zhang, X. Zhang, B. Fang, and L. Wang, "Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites," Microchimica Acta, vol. 168, pp. 87-92, 2009.
[62]P. Zhang, L. Zhang, G. Zhao, and F. Feng, "A highly sensitive nonenzymatic glucose sensor based on CuO nanowires," Microchimica Acta, vol. 176, pp. 411-417, 2011.
[63]F. Huang, Y. Zhong, J. Chen, S. Li, Y. Li, F. Wang, et al., "Nonenzymatic glucose sensor based on three different CuO nanomaterials," Analytical Methods, vol. 5, p. 3050, 2013.
[64]Y. Cudennec and A. Lecerf, "The transformation of Cu(OH)2 into CuO, revisited," Solid State Sciences, vol. 5, pp. 1471-1474, 2003.
[65]Z. Yang, J. Xu, W. Zhang, A. Liu, and S. Tang, "Controlled synthesis of CuO nanostructures by a simple solution route," Journal of Solid State Chemistry, vol. 180, pp. 1390-1396, 2007.
[66]G. Filipic and U. Cvelbar, "Copper oxide nanowires: a review of growth," Nanotechnology, vol. 23, p. 194001, May 17 2012.
[67]W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, and G. Wang, "A simple wet-chemical synthesis and characterization of CuO nanorods," Applied Physics A: Materials Science & Processing, vol. 76, pp. 417-420, 2003.
[68]X. Xu, H. Yang, and Y. Liu, "Self-assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2–NaOH aqueous systems," CrystEngComm vol. 14, pp. 5289-5298, 2012.
[69]C. Yang, F. Xiao, J. Wang, and X. Su, "3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors," Sensors and Actuators B: Chemical, vol. 207, pp. 177-185, 2015.
[70]P. Luo, S. V. Prabhu, and R. P. Baldwin, "Constant potential amperometric detection at a copper-based electrode: electrode formation and operation," Analytical Chemistry, vol. 62, pp. 752-755, 1990.
[71]J. Marioli and T. Kuwana, "Electrochemical characterization of carbohydrate oxidation at copper electrodes," Electrochimica Acta, vol. 37, pp. 1187-1197 1992.
[72]Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, et al., "CuO nanowires based sensitive and selective non-enzymatic glucose detection," Sensors and Actuators B: Chemical, vol. 191, pp. 86-93, 2014.
[73]S. T. Farrell and C. B. Breslin, "Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles," Electrochimica Acta, vol. 49, pp. 4497-4503, 2004.
[74]L. Tian and B. Liu, "Fabrication of CuO nanosheets modified Cu electrode and its excellent electrocatalytic performance towards glucose," Applied Surface Science, vol. 283, pp. 947-953, 2013.
[75]S. Park, T. Chung, and H. Kim, "Nonenzymatic Glucose Detection Using Mesoporous Platinum," Analytical Chemistry, vol. 75, pp. 3046-3049, 2003.
[76]Y. Bai, Y. Sun, and C. Sun, "Pt-Pb nanowire array electrode for enzyme-free glucose detection," Biosens Bioelectron, vol. 24, pp. 579-85, 2008.
[77]M. J. Song, S. K. Lee, J. H. Kim, and D. S. Lim, "Non-Enzymatic glucose sensor based on Cu electrode modified with CuO nanoflowers," Journal of the Electrochemical Society, vol. 160, pp. B43-B46, 2013.
[78]M. J. Song, S. K. Lee, J. H. Kim, and D. S. Lim, "Non-enzymatic glucose sensor based on Cu electrode modified with CuO nanoflowers," Journal of the Electrochemical Society, vol. 160, pp. B43-B46, 2013.
[79]X. Wang, C. Hu, H. Liu, G. Du, X. He, and Y. Xi, "Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing," Sensors and Actuators B: Chemical, vol. 144, pp. 220-225, 2010.
[80]S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, et al., "A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor," Talanta, vol. 86, pp. 157-63, 2011.
[81]X. Zhang, A. Gu, G. Wang, Y. Wei, W. Wang, H. Wu, et al., "Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor," CrystEngComm, vol. 12, pp. 1120-1126, 2010.
[82] S. Li, Y. Zheng, G. W. Qin, Y. Ren, W. Pei, and L. Zuo, "Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode," Talanta, vol. 85, pp. 1260-4, 2011.
[83]B. Fang, A. Gu, G. Wang, W. Wang, Y. Feng, C. Zhang, et al., "Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor," ACS Applied Materials & Interfaces, vol. 1, pp. 2829-2834, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊