跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏嘉
研究生(外文):CHEN, PO-CHIA
論文名稱:醫療管理系統與住院長度預測之研究- 從個案醫院到全國性資料庫
論文名稱(外文):A Study for the Healthcare Management System and Length of Stay Prediction – from Case Hospital to the National-level Database in Taiwan
指導教授:陳凱瀛陳凱瀛引用關係蔡佩芳蔡佩芳引用關係
指導教授(外文):CHEN, KAI-YINGTSAI, PEI-FANG
口試委員:邱垂昱陳凱瀛蔡佩芳林儀呂正欽
口試委員(外文):CHIU, CHUI-YUCHEN, KAI-YINGTSAI, PEI-FANGLIN, YILU, CHENG-CHIN
口試日期:2019-07-31
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:管理學院管理博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:醫療管理系統住院流程出院流程住院長度預測健保資料庫
外文關鍵詞:Healthcare Management SystemDynamic Importance-Performance AnalysisLength of Stay PredictionArtificial Neural NetworkNational-level DatabaseNHIRD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:2
醫療照護產業是服務業中具有獨特性質的產業,全球大多數已開發國家都面臨相似的困境:維持提供高品質的醫療照護前提下,同時為每個國民提供可負擔的醫療照護服務。隨著醫學科技在近代以前所未有的速度進展,醫療照護在規模和複雜性上不斷提升,迫使醫療照護系統從原本僅提供治療患者服務,轉變為同時需要來自衛生保健,醫療專家,醫院管理者甚至整個系統中的保險政策制定者共同投注心力的系統。
本研究從醫療管理的角度出發,以醫院病床管理為主體,分為三個階段:第一個階段研究主題為住院流程、出院流程及住院管理資訊系統的可用性評估,研究結果發現與住院長度預測相關的決策支援功能為使用者認為住院管理資訊系統最迫切應具備的系統功能;第二個階段研究主題為個案醫院心臟疾病患者住院長度預測之研究,透過線性回歸與類神經網路建立預測模型,並比較不同入院階段的住院長度預測表現;第三階段進一步應用個案醫院的住院長度預測模型建立程序及方法至全國性健保研究資料庫。
Most developed countries face the continuous pressure to keep offering the best and affordable health care services to every citizen, especially for counties with universal health care coverage. One of the most challenging issue in the definition of service quality and the cost structure in the healthcare industry lies in the lack of transparency or even common ground when comparing among clinics and hospitals. For acute-care inpatient facilities, the length of stay (LOS) is considered as a general measure associated with the complexity of treatment needed for individual patients.
In this research, a questionnaire-based approach is first proposed to evaluate the use of HIS in terms of usability factors. The perception of the satisfaction and expectation in these factors is then investigated using the generalized version of importance-performance analysis, or referred to as dynamic importance-performance analysis. The artificial neural network (ANN) models is constructed to predict LOS for inpatients with one of the three primary diagnoses: coronary atherosclerosis (CAS), heart failure (HF), and acute myocardial infarction (AMI) in a cardiovascular unit in a Christian hospital in Taipei. The National Health Insurance Research Database (NHIRD) of Taiwan is then applied to demonstrate the feasibility and the predictivity of the national-level LOS prediction model.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 vii
表目錄 ix
第 1 章 緒論 1
1.1. 研究背景 1
1.2. 研究目的與議題 5
1.2.1. 研究架構與流程 6
第 2 章 文獻回顧 7
2.1. 醫療資訊系統 7
2.1.1. 醫療資訊系統使用 8
2.1.2. 影響醫療資訊系統使用因素 9
2.2. 資訊系統可用性 12
2.2.1. 可用性 12
2.2.2. 醫療資訊科技可用性評估方法 14
2.2.3. 可用性問卷調查 16
2.3. LOS預測 17
2.3.1. 影響LOS的因素 17
2.3.2. 不同階段LOS預測應用於評估疾病風險 17
2.3.3. 心臟疾病的LOS預測 18
第 3 章 醫療資訊系統可用性評估 20
3.1. 住院管理資訊系統可用性評估 20
3.1.1. 住院管理資訊系統可用性問卷設計 21
3.1.2. 住院管理資訊系統可用性問卷調查結果 22
3.1.3. 住院管理資訊系統可用性問卷調查結果小結 26
3.2. 出院管理資訊系統可用性動態重視度表現值分析 27
3.2.1. 動態重視度表現值分析 28
3.2.2. 出院作業流程 30
3.2.3. 出院管理資訊系統可用性問卷設計 32
3.2.4. 出院管理資訊系統可用性問卷調查結果 32
3.2.5. 出院管理資訊系統可用性問卷調查結果小結 38
第 4 章 個案醫院心臟疾病患者LOS預測 39
4.1. 研究方法 39
4.1.1. 資料來源與資料前處理 39
4.1.2. 統計分析 41
4.1.3. 類神經網路結構 43
4.2. 研究結果 46
4.2.1. 冠狀動脈硬化患者預測結果 47
4.2.2. 心肌梗塞與心臟衰竭患者預測結果 48
4.2.3. 類神經網路模型驗證 49
4.2.4. 討論與小結 51
第 5 章 全國性心臟疾病患者LOS預測 53
5.1. 全國性健康保險資料庫 53
5.1.1. 全國性醫療系統 53
5.1.2. 台灣全民健康保險研究資料庫(NHIRD) 54
5.2. 資料收集與前處理 58
5.2.1. 資料申請與收集期間 58
5.2.2. 資料前處理 59
5.3. 敘述統計 64
5.3.1. 異常值診斷與篩選 64
5.3.2. 敘述統計分析 66
5.4. 統計分析 74
5.4.1. 皮爾森相關係數分析 74
5.4.2. 全國性心臟疾病患者LOS統計迴歸模型 76
5.5. 全國性住院長度預測模型 81
5.6. 討論與小結 85
第 6 章 研究結論與建議 87
6.1. 個別研究結果回顧與討論 87
6.1.1. 具LOS預測相關決策支援功能的住院管理資訊系統 87
6.1.2. 結構化的單一醫院入院前LOS預測可有效預測 88
6.1.3. 應用NHIRD建構全國性LOS預測模型可行且有效 88
6.2. 研究限制與未來研究方向 89
6.2.1. 資料合併的適切性 89
6.2.2. 疾病本身的複雜度與分類演進 90
6.2.3. 全國性LOS預測模型應用於醫院績效評估工具 92
參考文獻 94
附錄一、住院管理資訊系統可用性問卷調查 受訪者樣本結構 102
附錄二、出院管理資訊系統可用性問卷調查 受訪者樣本結構 103
附錄三、主診斷對應ICD-9-CM代碼與名稱 104
1.OECD (2019). OECD Health Statistics 2019. https://stats.oecd.org
2.Institute of Medicine (2001). Crossing the Quality Chasm: A New Health System for the 21st Century. National Academy of Sciences, Washington, D.C..
3.Wen, C. P., Tsai, S. P., & Chung, W. S. I. (2008). A 10-year experience with universal health insurance in Taiwan: measuring changes in health and health disparity. Annals of internal medicine, 148(4), 258-267.
4.Rauner, M. S., Kraus, M., & Schwarz, S. (2008). Competition under different reimbursement systems: The concept of an internet-based hospital management game. European Journal of Operational Research, 185(3), 948-963.
5.Huang, A. T., Wang, C. H. J., & Yaung, C. L. (2001). Insuring Taiwan's health. The McKinsey Quarterly, 4, 13-16.
6.Cheng, T. M. (2003). Taiwan’s new national health insurance program: genesis and experience so far. Health affairs, 22(3), 61-76.
7.Ball, M. J. (2003). Hospital information systems: perspectives on problems and prospects, 1979 and 2002. International journal of medical informatics, 69(2-3), 83-89.
8.Perreault, L. E., & Metzger, J. B. (1999). A pragmatic framework for understanding clinical decision support. Journal of Healthcare Information Management, 13, 5-22.
9.Morrissey, J. (2001). Eye on info. Clinical-care IT still the final frontier. Modern healthcare, 31(46), 22.
10.Haux, R. (2006). Health information systems–past, present, future. International journal of medical informatics, 75(3-4), 268-281.
11.Howell, E., Bessman, E., Kravet, S., Kolodner, K., Marshall, R., & Wright, S. (2008). Active bed management by hospitalists and emergency department throughput. Annals of internal medicine, 149(11), 804-810.
12.Poon, E. G., Jha, A. K., Christino, M., Honour, M. M., Fernandopulle, R., Middleton, B., ... & Kaushal, R. (2006). Assessing the level of healthcare information technology adoption in the United States: a snapshot. BMC Medical Informatics and Decision Making, 6(1), 1.
13.Viitanen, J., Hyppönen, H., Lääveri, T., Vänskä, J., Reponen, J., & Winblad, I. (2011). National questionnaire study on clinical ICT systems proofs: physicians suffer from poor usability. International journal of medical informatics, 80(10), 708-725.
14.DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95.
15.Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
16.Bhattacherjee, A., & Hikmet, N. (2007). Physicians' resistance toward healthcare information technology: a theoretical model and empirical test. European Journal of Information Systems, 16(6), 725-737.
17.Klein, R. (2007). An empirical examination of patient-physician portal acceptance. European Journal of Information Systems, 16(6), 751-760.
18.Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS quarterly, 227-247.
19.Lenz, R., & Reichert, M. (2007). IT support for healthcare processes–premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39-58.
20.Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information systems, 37(2), 99-116.
21.Janols, R., Lind, T., Göransson, B., & Sandblad, B. (2014). Evaluation of user adoption during three module deployments of region-wide electronic patient record systems. International journal of medical informatics, 83(6), 438-449.
22.Nabovati, E., Vakili-Arki, H., Eslami, S., & Khajouei, R. (2014). Usability evaluation of Laboratory and Radiology Information Systems integrated into a hospital information system. Journal of medical systems, 38(4), 35.
23.Martikainen, S., Korpela, M., & Tiihonen, T. (2014). User participation in healthcare IT development: A developers’ viewpoint in Finland. International Journal of Medical Informatics, 83(3), 189-200.
24.Shackel, B. (2009). Usability–Context, framework, definition, design and evaluation. Interacting with computers, 21(5-6), 339-346.
25.Wilson, C. (2009). User experience re-mastered: your guide to getting the right design. Morgan Kaufmann.
26.ISO 9241-11 (1998), Ergonomic Requirements for Office Work with Visual Display Terminals -- Part 11: Guidance on Usability, International Organization for Standardization.
27.ISO/IEC 9126-1 (2001), Software engineering -- Product quality -- Part 1: Quality model, International Organization for Standardization.
28.ISO 9241-210 (2010), Ergonomics of Human–System Interaction -- Part 210: Human-Centred Design for Interactive Systems, International Organization for Standardization.
29.Delice, E. K., & Güngör, Z. (2009). The usability analysis with heuristic evaluation and analytic hierarchy process. International Journal of Industrial Ergonomics, 39(6), 934-939.
30.Liljegren, E., & Osvalder, A. L. (2004). Cognitive engineering methods as usability evaluation tools for medical equipment. International Journal of Industrial Ergonomics, 34(1), 49-62.
31.Svanæs, D., Alsos, O. A., & Dahl, Y. (2010). Usability testing of mobile ICT for clinical settings: Methodological and practical challenges. International journal of medical informatics, 79(4), e24-e34.
32.Lottridge, D., Chignell, M., & Straus, S. E. (2011). Requirements analysis for customization using subgroup differences and large sample user testing: A case study of information retrieval on handheld devices in healthcare. International Journal of Industrial Ergonomics, 41(3), 208-218.
33.Fritz, F., Balhorn, S., Riek, M., Breil, B., & Dugas, M. (2012). Qualitative and quantitative evaluation of EHR-integrated mobile patient questionnaires regarding usability and cost-efficiency. International Journal of Medical Informatics, 81(5), 303-313.
34.Folmer, E., & Bosch, J. (2004). Architecting for usability: a survey. Journal of systems and software, 70(1-2), 61-78.
35.Shafinah, K., Selamat, M. H., Abdullah, R., Muhamad, A. N., & Noor, A. A. (2010). System evaluation for a decision support system. Information Technology Journal, 9(5), 889-898.
36.Martin, S., & Smith, P. (1996). Explaining variations in inpatient length of stay in the National Health Service. Journal of Health Economics, 15(3), 279-304.
37.Westert, G. P., Nieboer, A. P., & Groenewegen, P. P. (1993). Variation in duration of hospital stay between hospitals and between doctors within hospitals. Social Science & Medicine, 37(6), 833-839.
38.Serota, R. D., Lundy, A., Gottheil, E., Weinstein, S. P., & Sterling, R. C. (1995). Prediction of length of stay in an inpatient dual diagnosis unit. General Hospital Psychiatry, 17(3), 181-186.
39.Imai, H., Hosomi, J., Nakao, H., Tsukino, H., Katoh, T., Itoh, T., & Yoshida, T. (2005). Characteristics of psychiatric hospitals associated with length of stay in Japan. Health Policy, 74(2), 115-121.
40.Shortell, S. M., Zimmerman, J. E., Rousseau, D. M., Gillies, R. R., Wagner, D. P., Draper, E. A., ... & Duffy, J. (1994). The performance of intensive care units: does good management make a difference?. Medical care, 508-525.
41.Walczak, S., Pofahl, W. E., & Scorpio, R. J. (2003). A decision support tool for allocating hospital bed resources and determining required acuity of care. Decision support systems, 34(4), 445-456.
42.Verduijn, M., Peek, N., Voorbraak, F., de Jonge, E., & de Mol, B. A. J. M. (2007). Modeling length of stay as an optimized two-class prediction problem. Methods of Information in Medicine, 46(03), 352-359.
43.Yang, C. S., Wei, C. P., Yuan, C. C., & Schoung, J. Y. (2010). Predicting the length of hospital stay of burn patients: Comparisons of prediction accuracy among different clinical stages. Decision Support Systems, 50(1), 325-335.
44.Lin, C. L., Lin, P. H., Chou, L. W., Lan, S. J., Meng, N. H., Lo, S. F., & Wu, H. D. I. (2009). Model-based prediction of length of stay for rehabilitating stroke patients. Journal of the Formosan Medical Association, 108(8), 653-662.
45.Rowan, M., Ryan, T., Hegarty, F., & O’Hare, N. (2007). The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artificial Intelligence in Medicine, 40(3), 211-221.
46.Spratt, N., Wang, Y., Levi, C., Ng, K., Evans, M., & Fisher, J. (2003). A prospective study of predictors of prolonged hospital stay and disability after stroke. Journal of Clinical Neuroscience, 10(6), 665-669.
47.Janssen, D. P., Noyez, L., Wouters, C., & Brouwer, R. M. (2004). Preoperative prediction of prolonged stay in the intensive care unit for coronary bypass surgery. European Journal of Cardio-Thoracic Surgery, 25(2), 203-207.
48.Lee, A. H., Gracey, M., Wang, K., & Yau, K. K. (2005). A robustified modeling approach to analyze pediatric length of stay. Annals of Epidemiology, 15(9), 673-677.
49.Schmelzer, T. M., Mostafa, G., Lincourt, A. E., Camp, S. M., Kercher, K. W., Kuwada, T. S., & Heniford, B. T. (2008). Factors affecting length of stay following colonic resection. Journal of Surgical Research, 146(2), 195-201.
50.Rosen, A. B., Humphries, J. N., Muhlbaier, L. H., Kiefe, C. I., Kresowik, T., & Peterson, E. D. (1999). Effect of clinical factors on length of stay after coronary artery bypass surgery: results of the cooperative cardiovascular project. American Heart Journal, 138(1), 69-77.
51.Chang, J. K., Calligaro, K. D., Lombardi, J. P., & Dougherty, M. J. (2003). Factors that predict prolonged length of stay after aortic surgery. Journal of vascular surgery, 38(2), 335-339.
52.Berki, S. E., Ashcraft, M. L., & Newbrander, W. C. (1984). Length-of-stay variations within ICDA-8 diagnosis-related groups. Medical Care, 22(2), 126-142.
53.Chen, E., & Naylor, C. D. (1994). Variation in hospital length of stay for acute myocardial infarction in Ontario, Canada. Medical care, 420-435.
54.Whellan, D. J., Zhao, X., Hernandez, A. F., Liang, L., Peterson, E. D., Bhatt, D. L., ... & Fonarow, G. C. (2011). Predictors of hospital length of stay in heart failure: findings from Get With the Guidelines. Journal of cardiac failure, 17(8), 649-656.
55.Wen, C. P., Tsai, S. P., & Chung, W. S. I. (2008). A 10-year experience with universal health insurance in Taiwan: measuring changes in health and health disparity. Annals of internal medicine, 148(4), 258-267.
56.Chen, J.-C., Tsai, P.-F., & Lin, F.-M. (2012). Simulation study on the effect of diagnosis related group design in length-of-stay and case-mix index for hospitals in Taiwan, in Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1686–1690, Hong Kong.
57.Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert systems with applications, 36(1), 2-17.
58.Walczak, S., & Cerpa, N. (1999). Heuristic principles for the design of artificial neural networks. Information and software technology, 41(2), 107-117.
59.Medsker, L. R., & Liebowitz, J. (1993). Design and Development of Expert Systems and Neural Networks, Prentice Hall, Upper Saddle River, NJ, USA, 1993.
60.Lisboa, P. J. (2002). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural networks, 15(1), 11-39.
61.Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11), 1225-1231.
62.Dybowski, R., Gant, V., Weller, P., & Chang, R. (1996). Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet, 347(9009), 1146-1150.
63.Gholipour, C., Rahim, F., Fakhree, A., & Ziapour, B. (2015). Using an artificial neural networks (ANNs) model for prediction of intensive care unit (ICU) outcome and length of stay at hospital in traumatic patients. Journal of clinical and diagnostic research: JCDR, 9(4), OC19.
64.Launay, C. P., Rivière, H., Kabeshova, A., & Beauchet, O. (2015). Predicting prolonged length of hospital stay in older emergency department users: use of a novel analysis method, the Artificial Neural Network. European journal of internal medicine, 26(7), 478-482.
65.Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics, 35(5-6), 352-359.
66.Grossi, E., Mancini, A., & Buscema, M. (2007). International experience on the use of artificial neural networks in gastroenterology. Digestive and liver disease, 39(3), 278-285.
67.Li, J. S., Tian, Y., Liu, Y. F., Shu, T., & Liang, M. H. (2013, March). Applying a BP neural network model to predict the length of hospital stay. In International Conference on Health Information Science (pp. 18-29). Springer, Berlin, Heidelberg.
68.Bureau of National Health Insurance (2014). TW-DRGs Improve Healthcare Quality, Efficiency and Fairness. http://www.mohw.gov.tw/EN/Ministry/DM1P.aspx?flist no=378&fod list no=4999&doc no=45308.
69.Barnard, E., & Wessels, L. F. (1992). Extrapolation and interpolation in neural network classifiers. IEEE Control Systems Magazine, 12(5), 50-53.
70.Lawrence, S., Giles, C. L., & Tsoi, A. C. (1998). What size neural network gives optimal generalization? Convergence properties of backpropagation.
71.Boger, Z., & Guterman, H. (1997, October). Knowledge extraction from artificial neural networks models. In IEEE International Conference On Systems Man And Cybernetics(Vol. 4, pp. 3030-3035). INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE).
72.Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology, 3(6), 714-717.
73.Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314.
74.Dao, V. N., & Vemuri, V. R. (2002). A performance comparison of different back propagation neural networks methods in computer network intrusion detection. Differential equations and dynamical systems, 10(1&2), 201-214.
75.Mobley, B. A., Leasure, R., & Davidson, L. (1995). Artificial neural network predictions of lengths of stay on a post-coronary care unit. Heart & Lung: The Journal of Acute and Critical Care, 24(3), 251-256.
76.Reichertz, P. L. (2006). Hospital information systems—Past, present, future. International journal of medical informatics, 75(3-4), 282-299.
77.OECD (2011). Average Length of Stay in Hospitals. Health at a Glance 2011, OECD Indicators. OECD Publishing.
78.Hsiao, W. C., Sapolsky, H. M., Dunn, D. L., & Weiner, S. L. (1986). Lessons of the New Jersey DRG payment system. Health Affairs, 5(2), 32-43.
79.Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. The journal of marketing, 77-79.
80.Ainin, S., & Hisham, N. H. (2008). Applying Importance-Performance Analysis to Information Systems: An Exploratory Case Study. Journal of Information, Information Technology & Organizations, 3.
81.Lameire, N., Joffe, P., & Wiedemann, M. (1999). Healthcare systems—an international review: an overview. Nephrology Dialysis Transplantation, 14(suppl_6), 3-9.
82.Van Der Zee, J., & Kroneman, M. W. (2007). Bismarck or Beveridge: a beauty contest between dinosaurs. BMC health services research, 7(1), 94.
83.PNHP (2008). Health Care Systems - Four Basic Models. https://www.pnhp.org/
84.Wallace, L. S. (2013). A view of health care around the world. The Annals of Family Medicine, 11(1), 84-84.
85.Kulesher, R., & Forrestal, E. (2014). International models of health systems financing. Journal of Hospital Administration, 3(4), 127-139.
86.衛生福利部中央健康保險署(2016). 2015-2016全民健康保險年報. http://www.nhi.gov.tw/resource/Webdata/2015-16全民健康保險年報.pdf
87.衛生福利部中央健康保險署(2019). 2018-2019全民健康保險年報. http://www.nhi.gov.tw/resource/Webdata/2018-19全民健康保險年報.pdf
88.全民健康保險研究資料庫(NHIRD): https://nhird.nhri.org.tw/
89.衛生福利部統計處: https://dep.mohw.gov.tw/DOS/cp-2499-3563-113.html
90.Hsieh, C. Y., Su, C. C., Shao, S. C., Sung, S. F., Lin, S. J., Yang, Y. H. K., & Lai, E. C. C. (2019). Taiwan’s National Health Insurance Research Database: past and future. Clinical epidemiology, 11, 349.
91.Tsai, P. F. J., Chen, P. C., Chen, Y. Y., Song, H. Y., Lin, H. M., Lin, F. M., & Huang, Q. P. (2016). Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network. Journal of healthcare engineering, 2016.
92.Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied statistics, 119-127.
93.Quentin, W., Rätto, H., Peltola, M., Busse, R., Häkkinen, U., & EuroDRG group. (2013). Acute myocardial infarction and diagnosis-related groups: patient classification and hospital reimbursement in 11 European countries. European heart journal, 34(26), 1972-1981.
94.Gaughan, J., & Kobel, C. (2014). Coronary artery bypass grafts and diagnosis related groups: patient classification and hospital reimbursement in 10 European countries. Health economics review, 4(1), 4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top