|
1.OECD (2019). OECD Health Statistics 2019. https://stats.oecd.org 2.Institute of Medicine (2001). Crossing the Quality Chasm: A New Health System for the 21st Century. National Academy of Sciences, Washington, D.C.. 3.Wen, C. P., Tsai, S. P., & Chung, W. S. I. (2008). A 10-year experience with universal health insurance in Taiwan: measuring changes in health and health disparity. Annals of internal medicine, 148(4), 258-267. 4.Rauner, M. S., Kraus, M., & Schwarz, S. (2008). Competition under different reimbursement systems: The concept of an internet-based hospital management game. European Journal of Operational Research, 185(3), 948-963. 5.Huang, A. T., Wang, C. H. J., & Yaung, C. L. (2001). Insuring Taiwan's health. The McKinsey Quarterly, 4, 13-16. 6.Cheng, T. M. (2003). Taiwan’s new national health insurance program: genesis and experience so far. Health affairs, 22(3), 61-76. 7.Ball, M. J. (2003). Hospital information systems: perspectives on problems and prospects, 1979 and 2002. International journal of medical informatics, 69(2-3), 83-89. 8.Perreault, L. E., & Metzger, J. B. (1999). A pragmatic framework for understanding clinical decision support. Journal of Healthcare Information Management, 13, 5-22. 9.Morrissey, J. (2001). Eye on info. Clinical-care IT still the final frontier. Modern healthcare, 31(46), 22. 10.Haux, R. (2006). Health information systems–past, present, future. International journal of medical informatics, 75(3-4), 268-281. 11.Howell, E., Bessman, E., Kravet, S., Kolodner, K., Marshall, R., & Wright, S. (2008). Active bed management by hospitalists and emergency department throughput. Annals of internal medicine, 149(11), 804-810. 12.Poon, E. G., Jha, A. K., Christino, M., Honour, M. M., Fernandopulle, R., Middleton, B., ... & Kaushal, R. (2006). Assessing the level of healthcare information technology adoption in the United States: a snapshot. BMC Medical Informatics and Decision Making, 6(1), 1. 13.Viitanen, J., Hyppönen, H., Lääveri, T., Vänskä, J., Reponen, J., & Winblad, I. (2011). National questionnaire study on clinical ICT systems proofs: physicians suffer from poor usability. International journal of medical informatics, 80(10), 708-725. 14.DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95. 15.Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30. 16.Bhattacherjee, A., & Hikmet, N. (2007). Physicians' resistance toward healthcare information technology: a theoretical model and empirical test. European Journal of Information Systems, 16(6), 725-737. 17.Klein, R. (2007). An empirical examination of patient-physician portal acceptance. European Journal of Information Systems, 16(6), 751-760. 18.Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS quarterly, 227-247. 19.Lenz, R., & Reichert, M. (2007). IT support for healthcare processes–premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39-58. 20.Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information systems, 37(2), 99-116. 21.Janols, R., Lind, T., Göransson, B., & Sandblad, B. (2014). Evaluation of user adoption during three module deployments of region-wide electronic patient record systems. International journal of medical informatics, 83(6), 438-449. 22.Nabovati, E., Vakili-Arki, H., Eslami, S., & Khajouei, R. (2014). Usability evaluation of Laboratory and Radiology Information Systems integrated into a hospital information system. Journal of medical systems, 38(4), 35. 23.Martikainen, S., Korpela, M., & Tiihonen, T. (2014). User participation in healthcare IT development: A developers’ viewpoint in Finland. International Journal of Medical Informatics, 83(3), 189-200. 24.Shackel, B. (2009). Usability–Context, framework, definition, design and evaluation. Interacting with computers, 21(5-6), 339-346. 25.Wilson, C. (2009). User experience re-mastered: your guide to getting the right design. Morgan Kaufmann. 26.ISO 9241-11 (1998), Ergonomic Requirements for Office Work with Visual Display Terminals -- Part 11: Guidance on Usability, International Organization for Standardization. 27.ISO/IEC 9126-1 (2001), Software engineering -- Product quality -- Part 1: Quality model, International Organization for Standardization. 28.ISO 9241-210 (2010), Ergonomics of Human–System Interaction -- Part 210: Human-Centred Design for Interactive Systems, International Organization for Standardization. 29.Delice, E. K., & Güngör, Z. (2009). The usability analysis with heuristic evaluation and analytic hierarchy process. International Journal of Industrial Ergonomics, 39(6), 934-939. 30.Liljegren, E., & Osvalder, A. L. (2004). Cognitive engineering methods as usability evaluation tools for medical equipment. International Journal of Industrial Ergonomics, 34(1), 49-62. 31.Svanæs, D., Alsos, O. A., & Dahl, Y. (2010). Usability testing of mobile ICT for clinical settings: Methodological and practical challenges. International journal of medical informatics, 79(4), e24-e34. 32.Lottridge, D., Chignell, M., & Straus, S. E. (2011). Requirements analysis for customization using subgroup differences and large sample user testing: A case study of information retrieval on handheld devices in healthcare. International Journal of Industrial Ergonomics, 41(3), 208-218. 33.Fritz, F., Balhorn, S., Riek, M., Breil, B., & Dugas, M. (2012). Qualitative and quantitative evaluation of EHR-integrated mobile patient questionnaires regarding usability and cost-efficiency. International Journal of Medical Informatics, 81(5), 303-313. 34.Folmer, E., & Bosch, J. (2004). Architecting for usability: a survey. Journal of systems and software, 70(1-2), 61-78. 35.Shafinah, K., Selamat, M. H., Abdullah, R., Muhamad, A. N., & Noor, A. A. (2010). System evaluation for a decision support system. Information Technology Journal, 9(5), 889-898. 36.Martin, S., & Smith, P. (1996). Explaining variations in inpatient length of stay in the National Health Service. Journal of Health Economics, 15(3), 279-304. 37.Westert, G. P., Nieboer, A. P., & Groenewegen, P. P. (1993). Variation in duration of hospital stay between hospitals and between doctors within hospitals. Social Science & Medicine, 37(6), 833-839. 38.Serota, R. D., Lundy, A., Gottheil, E., Weinstein, S. P., & Sterling, R. C. (1995). Prediction of length of stay in an inpatient dual diagnosis unit. General Hospital Psychiatry, 17(3), 181-186. 39.Imai, H., Hosomi, J., Nakao, H., Tsukino, H., Katoh, T., Itoh, T., & Yoshida, T. (2005). Characteristics of psychiatric hospitals associated with length of stay in Japan. Health Policy, 74(2), 115-121. 40.Shortell, S. M., Zimmerman, J. E., Rousseau, D. M., Gillies, R. R., Wagner, D. P., Draper, E. A., ... & Duffy, J. (1994). The performance of intensive care units: does good management make a difference?. Medical care, 508-525. 41.Walczak, S., Pofahl, W. E., & Scorpio, R. J. (2003). A decision support tool for allocating hospital bed resources and determining required acuity of care. Decision support systems, 34(4), 445-456. 42.Verduijn, M., Peek, N., Voorbraak, F., de Jonge, E., & de Mol, B. A. J. M. (2007). Modeling length of stay as an optimized two-class prediction problem. Methods of Information in Medicine, 46(03), 352-359. 43.Yang, C. S., Wei, C. P., Yuan, C. C., & Schoung, J. Y. (2010). Predicting the length of hospital stay of burn patients: Comparisons of prediction accuracy among different clinical stages. Decision Support Systems, 50(1), 325-335. 44.Lin, C. L., Lin, P. H., Chou, L. W., Lan, S. J., Meng, N. H., Lo, S. F., & Wu, H. D. I. (2009). Model-based prediction of length of stay for rehabilitating stroke patients. Journal of the Formosan Medical Association, 108(8), 653-662. 45.Rowan, M., Ryan, T., Hegarty, F., & O’Hare, N. (2007). The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artificial Intelligence in Medicine, 40(3), 211-221. 46.Spratt, N., Wang, Y., Levi, C., Ng, K., Evans, M., & Fisher, J. (2003). A prospective study of predictors of prolonged hospital stay and disability after stroke. Journal of Clinical Neuroscience, 10(6), 665-669. 47.Janssen, D. P., Noyez, L., Wouters, C., & Brouwer, R. M. (2004). Preoperative prediction of prolonged stay in the intensive care unit for coronary bypass surgery. European Journal of Cardio-Thoracic Surgery, 25(2), 203-207. 48.Lee, A. H., Gracey, M., Wang, K., & Yau, K. K. (2005). A robustified modeling approach to analyze pediatric length of stay. Annals of Epidemiology, 15(9), 673-677. 49.Schmelzer, T. M., Mostafa, G., Lincourt, A. E., Camp, S. M., Kercher, K. W., Kuwada, T. S., & Heniford, B. T. (2008). Factors affecting length of stay following colonic resection. Journal of Surgical Research, 146(2), 195-201. 50.Rosen, A. B., Humphries, J. N., Muhlbaier, L. H., Kiefe, C. I., Kresowik, T., & Peterson, E. D. (1999). Effect of clinical factors on length of stay after coronary artery bypass surgery: results of the cooperative cardiovascular project. American Heart Journal, 138(1), 69-77. 51.Chang, J. K., Calligaro, K. D., Lombardi, J. P., & Dougherty, M. J. (2003). Factors that predict prolonged length of stay after aortic surgery. Journal of vascular surgery, 38(2), 335-339. 52.Berki, S. E., Ashcraft, M. L., & Newbrander, W. C. (1984). Length-of-stay variations within ICDA-8 diagnosis-related groups. Medical Care, 22(2), 126-142. 53.Chen, E., & Naylor, C. D. (1994). Variation in hospital length of stay for acute myocardial infarction in Ontario, Canada. Medical care, 420-435. 54.Whellan, D. J., Zhao, X., Hernandez, A. F., Liang, L., Peterson, E. D., Bhatt, D. L., ... & Fonarow, G. C. (2011). Predictors of hospital length of stay in heart failure: findings from Get With the Guidelines. Journal of cardiac failure, 17(8), 649-656. 55.Wen, C. P., Tsai, S. P., & Chung, W. S. I. (2008). A 10-year experience with universal health insurance in Taiwan: measuring changes in health and health disparity. Annals of internal medicine, 148(4), 258-267. 56.Chen, J.-C., Tsai, P.-F., & Lin, F.-M. (2012). Simulation study on the effect of diagnosis related group design in length-of-stay and case-mix index for hospitals in Taiwan, in Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1686–1690, Hong Kong. 57.Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert systems with applications, 36(1), 2-17. 58.Walczak, S., & Cerpa, N. (1999). Heuristic principles for the design of artificial neural networks. Information and software technology, 41(2), 107-117. 59.Medsker, L. R., & Liebowitz, J. (1993). Design and Development of Expert Systems and Neural Networks, Prentice Hall, Upper Saddle River, NJ, USA, 1993. 60.Lisboa, P. J. (2002). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural networks, 15(1), 11-39. 61.Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11), 1225-1231. 62.Dybowski, R., Gant, V., Weller, P., & Chang, R. (1996). Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet, 347(9009), 1146-1150. 63.Gholipour, C., Rahim, F., Fakhree, A., & Ziapour, B. (2015). Using an artificial neural networks (ANNs) model for prediction of intensive care unit (ICU) outcome and length of stay at hospital in traumatic patients. Journal of clinical and diagnostic research: JCDR, 9(4), OC19. 64.Launay, C. P., Rivière, H., Kabeshova, A., & Beauchet, O. (2015). Predicting prolonged length of hospital stay in older emergency department users: use of a novel analysis method, the Artificial Neural Network. European journal of internal medicine, 26(7), 478-482. 65.Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics, 35(5-6), 352-359. 66.Grossi, E., Mancini, A., & Buscema, M. (2007). International experience on the use of artificial neural networks in gastroenterology. Digestive and liver disease, 39(3), 278-285. 67.Li, J. S., Tian, Y., Liu, Y. F., Shu, T., & Liang, M. H. (2013, March). Applying a BP neural network model to predict the length of hospital stay. In International Conference on Health Information Science (pp. 18-29). Springer, Berlin, Heidelberg. 68.Bureau of National Health Insurance (2014). TW-DRGs Improve Healthcare Quality, Efficiency and Fairness. http://www.mohw.gov.tw/EN/Ministry/DM1P.aspx?flist no=378&fod list no=4999&doc no=45308. 69.Barnard, E., & Wessels, L. F. (1992). Extrapolation and interpolation in neural network classifiers. IEEE Control Systems Magazine, 12(5), 50-53. 70.Lawrence, S., Giles, C. L., & Tsoi, A. C. (1998). What size neural network gives optimal generalization? Convergence properties of backpropagation. 71.Boger, Z., & Guterman, H. (1997, October). Knowledge extraction from artificial neural networks models. In IEEE International Conference On Systems Man And Cybernetics(Vol. 4, pp. 3030-3035). INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE). 72.Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology, 3(6), 714-717. 73.Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314. 74.Dao, V. N., & Vemuri, V. R. (2002). A performance comparison of different back propagation neural networks methods in computer network intrusion detection. Differential equations and dynamical systems, 10(1&2), 201-214. 75.Mobley, B. A., Leasure, R., & Davidson, L. (1995). Artificial neural network predictions of lengths of stay on a post-coronary care unit. Heart & Lung: The Journal of Acute and Critical Care, 24(3), 251-256. 76.Reichertz, P. L. (2006). Hospital information systems—Past, present, future. International journal of medical informatics, 75(3-4), 282-299. 77.OECD (2011). Average Length of Stay in Hospitals. Health at a Glance 2011, OECD Indicators. OECD Publishing. 78.Hsiao, W. C., Sapolsky, H. M., Dunn, D. L., & Weiner, S. L. (1986). Lessons of the New Jersey DRG payment system. Health Affairs, 5(2), 32-43. 79.Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. The journal of marketing, 77-79. 80.Ainin, S., & Hisham, N. H. (2008). Applying Importance-Performance Analysis to Information Systems: An Exploratory Case Study. Journal of Information, Information Technology & Organizations, 3. 81.Lameire, N., Joffe, P., & Wiedemann, M. (1999). Healthcare systems—an international review: an overview. Nephrology Dialysis Transplantation, 14(suppl_6), 3-9. 82.Van Der Zee, J., & Kroneman, M. W. (2007). Bismarck or Beveridge: a beauty contest between dinosaurs. BMC health services research, 7(1), 94. 83.PNHP (2008). Health Care Systems - Four Basic Models. https://www.pnhp.org/ 84.Wallace, L. S. (2013). A view of health care around the world. The Annals of Family Medicine, 11(1), 84-84. 85.Kulesher, R., & Forrestal, E. (2014). International models of health systems financing. Journal of Hospital Administration, 3(4), 127-139. 86.衛生福利部中央健康保險署(2016). 2015-2016全民健康保險年報. http://www.nhi.gov.tw/resource/Webdata/2015-16全民健康保險年報.pdf 87.衛生福利部中央健康保險署(2019). 2018-2019全民健康保險年報. http://www.nhi.gov.tw/resource/Webdata/2018-19全民健康保險年報.pdf 88.全民健康保險研究資料庫(NHIRD): https://nhird.nhri.org.tw/ 89.衛生福利部統計處: https://dep.mohw.gov.tw/DOS/cp-2499-3563-113.html 90.Hsieh, C. Y., Su, C. C., Shao, S. C., Sung, S. F., Lin, S. J., Yang, Y. H. K., & Lai, E. C. C. (2019). Taiwan’s National Health Insurance Research Database: past and future. Clinical epidemiology, 11, 349. 91.Tsai, P. F. J., Chen, P. C., Chen, Y. Y., Song, H. Y., Lin, H. M., Lin, F. M., & Huang, Q. P. (2016). Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network. Journal of healthcare engineering, 2016. 92.Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied statistics, 119-127. 93.Quentin, W., Rätto, H., Peltola, M., Busse, R., Häkkinen, U., & EuroDRG group. (2013). Acute myocardial infarction and diagnosis-related groups: patient classification and hospital reimbursement in 11 European countries. European heart journal, 34(26), 1972-1981. 94.Gaughan, J., & Kobel, C. (2014). Coronary artery bypass grafts and diagnosis related groups: patient classification and hospital reimbursement in 10 European countries. Health economics review, 4(1), 4.
|