跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉耘呈
研究生(外文):YEH, YUN-CHENG
論文名稱:貴金屬奈米粒子修飾氧化亞銅/摻鋁氧化鋅複合非酵素型葡萄糖感測電極研究
論文名稱(外文):Research of Precious Metal Nanoparticles Modified Cu2O/AZO Hybrid Non-enzymatic Electrode Glucose Sensor
指導教授:陳錫釗
指導教授(外文):CHEN, HSI-CHAO
口試委員:陳昇暉郭倩丞
口試委員(外文):CHEN, SHENG-HUIKUO, CHIEN-CHENG
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:109
中文關鍵詞:摻鋁氧化鋅奈米柱氧化亞銅金奈米粒子銀奈米粒子非酵素葡萄糖感測電流式感測器
外文關鍵詞:AZO nanorodCuprous oxideGolden nanoparticleSilver nanoparticleNon-enzymatic glucose sensingAmperometric sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以金、銀奈米粒子修飾氧化亞銅之摻鋁氧化鋅(AZO)奈米柱複合材料在ITO玻璃,成功應用在非酵素葡萄糖感測中。實驗主要將分為四個部分:第一部份為在製鍍不同厚度之AZO晶種層,經水熱法成長AZO奈米柱陣列,再透過掃描式電子顯微鏡(SEM)與X光繞射儀(XRD)分析最佳晶種層;第二部分電化學沉積氧化亞銅於AZO奈米柱上,測得最適合對氧化亞銅沈積的AZO奈米柱最佳參數,以X光光電子能譜儀對氧化亞銅沈積之電解液pH值進行氧化態分析,測得最佳沈積時間;第三部分為化學合成金、銀奈米粒子,利用UV-Vis吸收光譜與SEM測得最佳粒徑,並透過Nafion分散均勻滴覆在Cu2O/AZO NR表面測定最佳靈敏度、線性度與擬合優越度;最後以電化學量測分析其氧化還原反應特性。
葡萄糖濃度0、50、100、150、200 (mg/dL)符合人體血糖濃度進行電化學儀的循環伏安法(CV),在Cu2O/AZO NR/ITO複合材料上對濃度與電流關係做線性擬合,得到其斜率為26.117、擬合優越度R2為0.9424。利用Nafion分散金、銀奈米粒子的作用下,將奈米粒子分佈在感測器表面幫助介面穩定,在金奈米修飾下測得其斜率變化提升至27.456,R2值達0.9643。
透過計時安培法(CA)量測在實際濃度變化時電流反應,在電位0.6 V環境下以銀奈米修飾電極測得最佳靈敏度12.3 (221.6 ),其線性範圍達60 – 200 mg/dL (3.33 – 11.11 mM),擬合度R2達0.997,可準確用於人體血糖感測。

The research is about using precious metal nanoparticles modified Cu2O/AZO composite on ITO glass ,and successfuly applied in non-enzymatic Glucose Sensor.
There’re four parts of the experiment: First, coating different thickness of Aluminum-doped Zinc Oxide (AZO) seed layer for growing AZO nanorod arrays by hydrothermal method, then using SEM and XRD analyzed the best seed layer parameter. Second, electrodepositing Cuprous oxide (Cu2O) on AZO nanorod, and measured the best parameter for deposited Cu2O on AZO nanorods, then using XPS to analyze the Oxidation state of pH value in Cu2O precursor solution, and measuring the best deposition time. Third, chemical synthesis Au, Ag nanoparticles, and using UV-Vis absorption spectrum and SEM to get the best particle size, also through the Nafion to evenly dispersed on the surface of Cu2O/AZO NR, Last, analyzing its’ Redox reactions characteristic through the electrochemical analyzer, and also the best sensitivity, linearity and accuracy.
Selecting the concentration of glucose 0, 50, 100, 150, 200 (mg/dL) which are match the human blood glucose to do the Cyclic voltammetry (CV) of electrochemical analyzer. Then linear fitting the relation of concentration and current on Cu2O/AZO NR/ITO composite to get its’ change slope is 26.117 and the coefficient of determination (R2 ) is 0.9424. Using Nafion to disperse Au, Ag nanoparticles to let the nanoparticles spread on the surface of sensor for helping its’ interface be stable, the slope increased to 27.456 and the R2 is up to 0.9643 by modified with Au nanoparticles.
To measure the reaction of current in changing concentration through the Chronoamperometry (CA) ,when working potential in 0.6V can get the best sensitivity in 12.3 (221.6 ) with modified by Ag nanoparticle, and the linear range is to 60 – 200 mg/dL (3.33 – 11.11 mM) and the R2 is up to 0.997, thus, it’s suit to sense blood sugar of human body.

摘要 i
ABSTRACT ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 論文架構 5
第二章 理論探討與文獻回顧 6
2-1 感測器簡介 6
2-1-1 感測器種類 7
2-2 摻鋁氧化鋅(AZO) 12
2-2-1 摻鋁氧化鋅特性 12
2-2-2 摻鋁氧化鋅奈米柱合成方式[25-28] 13
2-3 氧化亞銅 18
2-4 貴金屬奈米粒子 19
2-5 文獻回顧 20
第三章 實驗方法與步驟 24
3-1 實驗流程 24
3-2 實驗藥品及耗材 27
3-3 儀器設備介紹 28
3-3-1 冷場發射掃描式電子顯微鏡(Cold Field Emission Scanning Electron Microscope, FE-SEM) 28
3-3-2 UV-可見光光柵光譜儀(UV-Visible Spectrophotometer) 29
3-3-3 X光繞射儀(X-ray diffraction, XRD) 30
3-3-4 拉曼光譜儀(Raman spectrometer) 32
3-3-5 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 33
3-3-6 電化學分析儀(Electric chemistry analyzer) 34
3-4 實驗步驟及方法 36
3-4-1 基板清洗 36
3-4-2 網版印刷電極 37
3-4-3 製備摻鋁氧化鋅(AZO)晶種層 38
3-4-4 水熱法合成摻鋁氧化鋅(AZO)奈米柱 41
3-4-5 氧化亞銅沈積 42
3-4-6 金/銀奈米粒子調配 44
3-4-7 Nafion 固定劑調配 45
第四章 結果與討論 46
4-1 摻鋁氧化鋅(AZO)奈米柱 46
4-1-1 AZO晶種層特性分析 46
4-1-2 XRD探討AZO奈米柱結晶狀態 51
4-2 氧化亞銅沈積特性探討 52
4-2-1 Raman光譜分析氧化亞銅沈積情形 55
4-2-2 XPS能譜分析沈積情形 56
4-2-3 Cu2O/AZO奈米柱表面形貌 59
4-2-4 XRD探討Cu2O在AZO奈米柱沈積情形 62
4-3 貴金屬奈米粒子 63
4-3-1 奈米粒子形貌分析 63
4-3-2 SEM探討奈米粒子 66
4-4 電化學特性量測分析 68
4-4-1 氧化還原電位範圍 68
4-4-2 循環伏安法(CV)曲線分析 70
4-4-3 以金屬奈米粒子修飾Cu2O/AZO NR感測電極試片 76
4-5 計時電流滴定量測(Chronoamperometry) 79
4-5-1 反應工作電位 79
4-5-2 金屬奈米粒子修飾計時電流量測 81
4-5-3 相關電流式感測器文獻比較 87
第五章 結論 88
參考文獻 90
[1]W. H. Organization and W. H. O. M. o. S. A. Unit, Global status report on alcohol and health, 2014. World Health Organization, 2014.
[2]R. R. Bourne et al., "Causes of vision loss worldwide, 1990–2010: a systematic analysis," The lancet global health, vol. 1, no. 6, pp. e339-e349, 2013.
[3]"糖尿病," 慢性疾病防治組, 2016.
[4]W. H. Organization, "Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation," World Hearth Org, 2006.
[5]S. Vijan, "TYpe 2 diabetes," Annals of Internal Medicine, vol. 152, no. 5, pp. ITC3-1-1, 2010, doi: 10.7326/0003-4819-152-5-201003020-01003.
[6]M. Collazo, Mayo clinic on managing diabetes. Orient Paperbacks, 2008.
[7]B. Tripathy, H. B. Chandalia, and A. K. Das, RSSDI textbook of diabetes mellitus. JP Medical Ltd, 2012.
[8]W. J. Craig and A. R. Mangels, "Position of the American Dietetic Association: vegetarian diets," Journal of the American dietetic association, vol. 109, no. 7, pp. 1266-1282, 2009.
[9]黎雨青, 李奕德, and 陳順天, "潛伏性成人自體免疫糖尿病," 家庭醫學與基層醫療, vol. 24, no. 9, pp. 327-330, 2009.
[10]Roche, "ACCU-CHEK," 2018.
[11]黃炳照、莊睦賢, "電化學感測器," 化工技術 第七卷第二期, 1999.
[12]格魯德, "化學傳感器," 科學出版社, 2008.
[13]D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, no. 1, pp. 121-131, 2001.
[14]D. Diamond, "Chemical Analysis Vo1. 150," New York, 1998.
[15]V. Perumal and U. Hashim, "Advances in biosensors: Principle, architecture and applications," Journal of applied biomedicine, vol. 12, no. 1, pp. 1-15, 2014.
[16]D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Pure and applied chemistry, vol. 71, no. 12, pp. 2333-2348, 1999.
[17]I. Biran, X. Yu, and D. R. Walt, "Optrode-based fiber optic biosensors (bio-optrode)," in Optical Biosensors (Second Edition): Elsevier, 2008, pp. 3-82.
[18]R. L. Caygill, G. E. Blair, and P. A. Millner, "A review on viral biosensors to detect human pathogens," Analytica Chimica Acta, vol. 681, no. 1-2, pp. 8-15, 2010.
[19]J. Tichý, J. Erhart, E. Kittinger, and J. Privratska, Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media, 2010.
[20]S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, no. 3, pp. 293-340, 2005.
[21]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of physics: condensed matter, vol. 16, no. 25, p. R829, 2004.
[22]Z. Tang et al., "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, no. 25, pp. 3270-3272, 1998.
[23]Y. Lin et al., "Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures," Journal of Alloys and Compounds, vol. 650, pp. 37-44, 2015.
[24]R. Escudero and R. Escamilla, "Ferromagnetic behavior of high-purity ZnO nanoparticles," Solid State Communications, vol. 151, no. 2, pp. 97-101, 2011.
[25]Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society, vol. 123, no. 13, pp. 3165-3166, 2001.
[26]B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied physics letters, vol. 81, no. 4, pp. 757-759, 2002.
[27]S. Y. Li, C. Y. Lee, and T. Y. Tseng, "Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process," Journal of Crystal Growth, vol. 247, no. 3-4, pp. 357-362, 2003.
[28]X. Wang, C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays," Nano letters, vol. 4, no. 3, pp. 423-426, 2004.
[29]L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, no. 17, pp. 3350-3352, 2001.
[30]Y.-C. Wang, C. Leu, and M.-H. Hon, "Preparation of nanosized ZnO arrays by electrophoretic deposition," Electrochemical and Solid-State Letters, vol. 5, no. 4, pp. C53-C55, 2002.
[31]M. Zheng, L. Zhang, G. Li, and W. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363, no. 1-2, pp. 123-128, 2002.
[32]H. J. Fan et al., "Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach," Nanotechnology, vol. 16, no. 6, p. 913, 2005.
[33]G. Wu et al., "Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process," Solid State Communications, vol. 134, no. 7, pp. 485-489, 2005.
[34]C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, 2013.
[35]W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of crystal growth, vol. 203, no. 1-2, pp. 186-196, 1999.
[36]A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, no. 1, pp. 49-56, 2006.
[37]呂宗昕, "圖解奈米科技與光觸媒," 台北市: 商周, 2003.
[38]Q. Hou, F. Meng, and J. Sun, "Electrical and optical properties of Al-doped ZnO and ZnAl 2 O 4 films prepared by atomic layer deposition," Nanoscale research letters, vol. 8, no. 1, p. 144, 2013.
[39] A. Rokade et al., "Electrochemical synthesis of p-Cu2O/n-ZnO nanorods hetero-junction for photovoltaic application," in AIP Conference Proceedings, 2016, vol. 1724, no. 1: AIP Publishing, p. 020009.
[40]M. Liu, R. Liu, and W. Chen, "Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability," Biosensors and Bioelectronics, vol. 45, pp. 206-212, 2013.
[41]C. J. Murphy and N. R. Jana, "Controlling the aspect ratio of inorganic nanorods and nanowires," Advanced Materials, vol. 14, no. 1, pp. 80-82, 2002.
[42]Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, vol. 298, no. 5601, pp. 2176-2179, 2002.
[43]C. Lofton and W. Sigmund, "Mechanisms controlling crystal habits of gold and silver colloids," Advanced Functional Materials, vol. 15, no. 7, pp. 1197-1208, 2005.
[44]Z. Wang, J. Liu, X. Chen, J. Wan, and Y. Qian, "A Simple Hydrothermal Route to Large‐Scale Synthesis of Uniform Silver Nanowires," Chemistry–A European Journal, vol. 11, no. 1, pp. 160-163, 2005.
[45]Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, and M. Nogami, "Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties," The Journal of Physical Chemistry C, vol. 111, no. 26, pp. 9095-9104, 2007.
[46]C. Karuppiah, S. Palanisamy, S.-M. Chen, V. Veeramani, and P. Periakaruppan, "Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles," Microchimica Acta, vol. 181, no. 15-16, pp. 1843-1850, 2014.
[47]D.-L. Zhou, J.-J. Feng, L.-Y. Cai, Q.-X. Fang, J.-R. Chen, and A.-J. Wang, "Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing," Electrochimica Acta, vol. 115, pp. 103-108, 2014.
[48]Y. Zhao et al., "Hyper-Branched Cu@ Cu2O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection," ACS applied materials & interfaces, vol. 7, no. 30, pp. 16802-16812, 2015.
[49]X. Liu, L. Long, W. Yang, L. Chen, and J. Jia, "Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing," Sensors and Actuators B: Chemical, vol. 266, pp. 853-860, 2018.
[50]X. Ma, Q. Zhao, H. Wang, and S. Ji, "Controlled synthesis of CuO from needle to flower-like particle morphologies for highly sensitive glucose detection," Int. J. Electrochem. Sci., vol. 12, pp. 8217-8226, 2017.
[51]L. Hou, H. Zhao, S. Bi, Y. Xu, and Y. Lu, "Ultrasensitive and highly selective sandpaper-supported copper framework for non-enzymatic glucose sensor," Electrochimica Acta, vol. 248, pp. 281-291, 2017.
[52]X. Liu, W. Yang, L. Chen, and J. Jia, "Three-dimensional copper foam supported CuO nanowire arrays: an efficient non-enzymatic glucose sensor," Electrochimica Acta, vol. 235, pp. 519-526, 2017.
[53]T. Lan, A. Fallatah, E. Suiter, and S. Padalkar, "Size controlled copper (I) oxide nanoparticles influence sensitivity of glucose biosensor," Sensors, vol. 17, no. 9, p. 1944, 2017.
[54]A. Patterson, "The Scherrer formula for X-ray particle size determination," Physical review, vol. 56, no. 10, p. 978, 1939.
[55]V. Ciupină, S. Zamfirescu, and G. Prodan, "Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images," in Nanotechnology–Toxicological Issues and Environmental Safety and Environmental Safety: Springer, 2007, pp. 231-237.
[56]N. Colthup, Introduction to infrared and Raman spectroscopy. Elsevier, 2012.
[57]S. Petrovic, "Cyclic voltammetry of hexachloroiridate (IV): An alternative to the electrochemical study of the ferricyanide ion," The Chemical Educator, vol. 5, no. 5, pp. 231-235, 2000.
[58]K. Lee, J.-W. Lee, S.-I. Kim, and B.-k. Ju, "Single-walled carbon nanotube/Nafion composites as methanol sensors," Carbon, vol. 49, no. 3, pp. 787-792, 2011.
[59]Y. Zhao et al., "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor," Scientific reports, vol. 6, p. 32327, 2016.
[60]梁茹夢, "電鍍氧化亞銅經退火處理於光解水製氫應用之探討," 碩士論文, no. 國立交通大學材料科學與工程系所, 2009.
[61]C. Tang, X. Ning, J. Li, H.-L. Guo, and Y. Yang, "Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation," Journal of Materials Science & Technology, vol. 35, no. 8, pp. 1570-1577, 2019, doi: 10.1016/j.jmst.2019.04.009.
[62]W. contributors, "Copper," no. Wikipedia, The Free Encyclopedia.
[63]S. Choudhary et al., "Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase," AIP Advances, vol. 8, no. 5, p. 055114, 2018.
[64]N. G. Elfadill, M. Hashim, K. M. Chahrour, M. Qaeed, and M. Bououdina, "The influence of Cu2O crystal structure on the Cu2O/ZnO heterojunction photovoltaic performance," Superlattices and Microstructures, vol. 85, pp. 908-917, 2015.
[65]賴炤銘 and 李錫隆, "奈米材料的特殊效應與應用," CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), vol. 61, no. 4, pp. 585-597, 2003.
[66]nanoComposix, "Gold Nanoparticles: Optical Properties," no. nanoComposix, 2019.
[67]D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, "A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra," Analyst, vol. 139, no. 19, pp. 4855-4861, 2014.
[68]C. Lee, S. H. Lee, M. Cho, and Y. Lee, "Nonenzymatic amperometric glucose sensor based on a composite prepared from CuO, reduced graphene oxide, and carbon nanotube," Microchimica Acta, vol. 183, no. 12, pp. 3285-3292, 2016.
[69]S. Felix, P. Kollu, B. P. Raghupathy, S. K. Jeong, and A. N. Grace, "Electrocatalytic activity of Cu 2 O nanocubes based electrode for glucose oxidation," Journal of Chemical Sciences, vol. 126, no. 1, pp. 25-32, 2014.
[70]B.-Y. Wu et al., "Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode," Biosensors and Bioelectronics, vol. 22, no. 12, pp. 2854-2860, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊