[1]Wamba, S. F., Akter, S., Edwards, A., Chopin, G., &; Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246.
[2]Wilder, B. (2012). Cloud architecture patterns: using microsoft azure. &;quot; O&;apos;&;apos;Reilly Media, Inc.&;quot;.
[3]Bracci, F., Corradi, A., &; Foschini, L. (2012, July). Database security management for healthcare SaaS in the Amazon AWS Cloud. In Computers and Communications (ISCC), 2012 IEEE Symposium on (pp. 000812-000819). IEEE.
[4]Linda A. Winters-Miner, PhD, Pat S. Bolding, MD, Joseph M. Hilbe, JD, PhD, Mitchell Goldstein, MD,Thomas Hill, PhD, Robert Nisbet, PhD, Nephi Walton, MS, PhD, Gary D. Miner, PhD.(2015). IBM Watson for Clinical Decision Support, Practical Predictive Analytics and Decisioning Systems for Medicine(pp.1038–1040)
[5]Ghemawat, S., Gobioff, H., &; Leung, S. T. (2003, October). The Google file system. In ACM SIGOPS operating systems review (Vol. 37, No. 5, pp. 29-43). ACM.
[6]Lam, C. (2010). Hadoop in action. Manning Publications Co..
[7]Carstoiu, D., Cernian, A., &; Olteanu, A. (2010, May). Hadoop hbase-0.20.2 performance evaluation. In New Trends in Information Science and Service Science (NISS), 2010 4th International Conference on (pp. 84-87). IEEE.
[8]Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., &; Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.
[9]Cristianini, N., &; Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press.
[10]Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46). IBM New York.
[11]A. Clare, R.D. King, Knowledge discovery in multi-label phenotype data, in:Proceedings of the 5th European Conference on PKDD, 2001, pp. 42–53.
[12]H. Blockeel, L.D. Raedt, J. Ramon, Top-down induction of clustering trees, in:Proceedings of the 15th International Conference on Machine Learning, 1998,pp. 55–63.
[13]Faqeeh, M., Abdulla, N., d Al-Ayyoub, M., Jararweh, Y., &; Quwaider, M. (2014, August). Cross-lingual Short-Text Document Classification for Facebook Comments. In The 2nd International Conference on Future Internet of Things and Cloud (FiCloud 2014).
[14]Sun, A., Lim, E. P., &; Liu, Y. (2009). On strategies for imbalanced text classification using SVM: A comparative study. Decision Support Systems,48(1), 191-201.
[15]Liu, C. L., Nakashima, K., Sako, H., &; Fujisawa, H. (2003). Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recognition,36(10), 2271-2285.
[16]Alham, N. K., Li, M., Liu, Y., &; Hammoud, S. (2011). A MapReduce-based distributed SVM algorithm for automatic image annotation. Computers &; Mathematics with Applications, 62(7), 2801-2811.
[17]Fu, K., Qu, J., Chai, Y., &; Dong, Y. (2014). Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomedical Signal Processing and Control, 13, 15-22.
[18]Kumar, M. A., &; Gopal, M. (2010). A comparison study on multiple binary-class SVM methods for unilabel text categorization. Pattern Recognition Letters, 31(11), 1437-1444.
[19]Cheng, W. C., &; Jhan, D. M. (2011, October). A cascade classifier using Adaboost algorithm and support vector machine for pedestrian detection. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on (pp. 1430-1435). IEEE.
[20]Alladi, S. M., Shinde Santosh, P., Ravi, V., &; Murthy, U. S. (2008). Colon cancer prediction with genetic profiles using intelligent techniques. Bioinformation, 3(2), 130-133.
[21]Chang, C. C., &; Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
[22]Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., ... &; Zupan, B. (2013). Orange: data mining toolbox in Python. The Journal of Machine Learning Research, 14(1), 2349-2353.
[23]Joachims, T. (1999). Svmlight: Support vector machine. SVM-Light Support Vector Machine http://svmlight. joachims. org/, University of Dortmund, 19(4).
[24]方耀輝. (2005). 以密度叢集法提升支持向量機之分類效率. 成功大學工業與資訊管理學系學位論文, 1-61.
[25]Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., &; Vapnik, V. (2004). Parallel support vector machines: The cascade svm. In Advances in neural information processing systems (pp. 521-528).
[26]Apache Hadoop, http://hadoop.apache.org, April 2014(last accessed:2015/06/7)
[27]李慧珍. (2014). 以多重 Hadoop 叢集提升雲端運算資料之可用及可靠度. 輔仁大學資訊工程學系學位論文, 1-58.
[28]鄭峰麒. (2013) .Hadoop 雲端運算效能評估與行動管理系統. 虎尾科技大學資訊工程研究所碩士論文.[29]阮有淨江, (2013).設計與實作一個將單機環境軟體轉換到 Hadoop 基礎分散式環境的 MapReduce 框架 . 國立成功大學製造資訊與系統研究所碩博士班, 碩士論文.[30]Shvachko, K., Kuang, H., Radia, S., &; Chansler, R. (2010, May). The hadoop distributed file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on (pp. 1-10). IEEE.
[31]White, T. (2012). Hadoop: The definitive guide. &;quot; O&;apos;&;apos;Reilly Media, Inc.&;quot;.
[32]Tsoumakas, G., &; Katakis, I. (2006). Multi-label classification: An overview.Dept. of Informatics, Aristotle University of Thessaloniki, Greece.
[33]Zhang, M. L., &; Zhou, Z. H. (2005, July). A k-nearest neighbor based algorithm for multi-label classification. In Granular Computing, 2005 IEEE International Conference on (Vol. 2, pp. 718-721). IEEE.
[34]Li, T., &; Ogihara, M. (2003, October). Detecting emotion in music. In ISMIR(Vol. 3, pp. 239-240).
[35]Boutell, M. R., Luo, J., Shen, X., &; Brown, C. M. (2004). Learning multi-label scene classification. Pattern recognition, 37(9), 1757-1771.
[36]鄧如秀. (2005). 二元分類技術應用於社區護理與篩檢之探討--以某縣原住民部落心臟血管疾病危險因子為例. 國立台北護理學院護理研究所碩士班碩士論文.[37]Hong, L., Dan, O., &; Davison, B. D. (2011, March). Predicting popular messages in twitter. In Proceedings of the 20th international conference companion on World wide web (pp. 57-58). ACM.
[38]Chang, C. J. (2009). 即時無線瞌睡偵測腦機介面系統. 交通大學電機與控制工程系所學位論文, 1-86.
[39]Cateni, S., Colla, V., &; Vannucci, M. (2014). A method for resampling imbalanced datasets in binary classification tasks for real-world problems.Neurocomputing, 135, 32-41.
[40]Kleinbaum, D. G., &; Klein, M. (2010). Analysis of Matched Data Using Logistic Regression (pp. 389-428). Springer New York.
[41]Hagan, M. T., Demuth, H. B., &; Beale, M. H. (1996). Neural network design(pp. 2-14). Boston: Pws Pub..
[42]Friedman, N., Geiger, D., &; Goldszmidt, M. (1997). Bayesian network classifiers. Machine learning, 29(2-3), 131-163.
[43]Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 12). New York: springer.
[44]Platt, J. C., Cristianini, N., &; Shawe-Taylor, J. (1999, November). Large Margin DAGs for Multiclass Classification. In nips (Vol. 12, pp. 547-553).
[45]Basu, C., Hirsh, H., &; Cohen, W. (1998, July). Recommendation as classification: Using social and content-based information in recommendation. In AAAI/IAAI (pp. 714-720).
[46]Kim, J. H. (2009). Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics &; Data Analysis, 53(11), 3735-3745.
[47]Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
[48]Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
[49]Olson, D. L., &; Delen, D. (2008). Advanced data mining techniques. Springer Science &; Business Media.
[50]Vapnik, V. N., &; Vapnik, V. (1998). Statistical learning theory (Vol. 1). New York: Wiley.
[51]Freund, Y., &; Mason, L. (1999, June). The alternating decision tree learning algorithm. In icml (Vol. 99, pp. 124-133).
[52]Kramer, O. (2015). Cascade Support Vector Machines with Dimensionality Reduction. Applied Computational Intelligence and Soft Computing, 2015.
[53]Song, J., Wu, T., &; An, P. (2008, November). Cascade linear SVM for object detection. In Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for (pp. 1755-1759). IEEE.
[54]Yang, J. (2006, June). An improved cascade SVM training algorithm with crossed feedbacks. In Computer and Computational Sciences, 2006. IMSCCS&;apos;&;apos;06. First International Multi-Symposiums on (Vol. 2, pp. 735-738). IEEE.
[55]Blake, C., &; Merz, C. J. (1998). {UCI} Repository of machine learning databases.
[56]Çatak, F. Ö., &; Balaban, M. E. (2013). A MapReduce based distributed SVM algorithm for binary classification. Turkish Journal of Electrical Engineering &; Computer Science.
[57]Skin Segmentation Data Set, UC Irvine Machine Learning Repository,https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation(last accessed:2015/6/25)
[58]HIGGS Data Set, UC Irvine Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets/HIGGS (last accessed:2015/6/25)