參考文獻
[1]A.C. Ugural, Stress in Plates and Shells. 2nd edition, McGraw-Hill, New York, 1999.
[2]劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用。第二版,蒼海圖書資訊股份有限公司,新北市,2016。
[3]T. Belytscho, Y. Krongauz, D. Organ et al. Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg., 139: 3~47, 1996.
[4]S. Li, W.K. Liu. Meshfree and particle methods and their applications. Appl. Mech. Rev., 55(1):1~34, 2002.
[5]劉更、劉天祥、謝琴,無網格法及其應用。西北工業大學出版社,西安市,2005。
[6]L.B. Lucy, A numerical approach to the testing of the fission hypothesis. The Astron. J., 8(12): 1013~1024, 1977.
[7]D.H. Mclain, Drawing contours from arbitrary data points. Comput. J., 17: 318~324, 1974.
[8]R.E. Barnhill, Representation and approximation of surfaces, in Mathematical Software III, Academic Press, New York, 69~120, 1977.
[9]W.J. Gordon, J.A Wixom, Shepard’s method of metric interpolation to bivariate and multivariate data. Math. Comput., 32: 253~264, 1978.
[10]P. Lancaster, K. Salkauskas, Surface generated by moving least-squares methods. Math. Comput., 37: 141~158, 1981.
[11]T. Belytschko, Y.Y. Liu, L. Gu, Element-free Galerkin methods. Int. J. Numer. Mech. Engng., 37: 229~256, 1994.
[12]B. Nayroles, G. Touzot, P. Villon, Generalizing the elements. Comput. Meth., 10: 307~318, 1992.
[13]C.A. Duarte, J.T. Oden, Hp clouds: a h-p meshless methods. Numerical Methods for Partial Differential Equations, 12: 673~705, 1996.
[14]C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Engrg., 139: 237~262, 1996.
[15]W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods. Int J. Nemer. Methods Engrg., 20: 1081~1106, 1995.
[16]W.K. Liu, Y. Chen, Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids, 21: 901~931, 1995.
[17]W.K. Liu, S. Li, T. Belytscho, Moving least square Kernel Galerkin methods Part: Methodology and convergence. Computer Methods in Applied Mechanicsand Engineering, 143: 113~154, 1997.
[18]S. Li, W.K. Liu, Reproducing kernel Hierarchical partition of unity, Part I – formulation and theory. International Journal for Numerical Methods in Engineering, 45: 251~288, 1999.
[19]S. Li, W.K. Liu, Reproducing kernel Hierarchical partition of unity, Part II – applications. International Journal for Numerical Methods in Engineering, 45: 289~317, 1999.
[20]T. Zhu, J. Zhang, S.N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput. Mech., 21: 223~235, 1998.
[21]T. Zhu, J. Zhang, S.N. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Comput. Mech., 22: 174~186, 1998.
[22]S.N. Atluri, J. Sladek, V. Sladek et al. The local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity. Comput. Mech., 25: 180~198, 2000.
[23]S.N. Atluri, T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 22: 117~127, 1998.
[24]S.N. Atluri, J.Y. Chao, H.G. Kim, Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Comput. Mech., 24: 334~347, 1999.
[25]S.N. Atluri, H.G. Kim, J.Y. Chao, A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods. Comput. Mech., 24: 348~372, 1999.
[26]S.N. Atluri, T. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., 25: 169~179, 2000.
[27]G.R. Liu, Y.T. Liu, Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput. Mech., 26: 536~546, 2000.
[28]盛若磐,元素釋放法積分法則與權函數之改良。近代工程計算論壇論文集,國立中央大學土木系,2000。
[29]汪神義,複合層板之無網格法分析。國立成功大學土木工程研究所碩士論文,2003。[30]鄭志源,微分再生核近似法於二維平板挫屈之分析。國立成功大學土木工程研究所碩士論文,2004。[31]高嘉坤,無元素法在平板問題之應用。國立臺灣科技大學營建工程研究所博士論文,2005。[32]P.H. Wen, Y.C. Hon, Geometrically Nonlinear Analysis of Reissner-Mindlin Plate by Meshless Computation. CMES., 21(3): 177~197, 2007.
[33]邱冠豪,Reissner混合變分原理無網格適點與無元素Galerkin方法之發展與其在功能性梯度材料板殼三維靜動態行為分析之應用。國立成功大學土木工程研究所博士論文,2011。[34]陳皇甫,齊次基底移動最小二乘法在平板分析上之應用。國立成功大學土木工程研究所碩士論文,2011。[35]徐傳婷,受束制之移動最小二乘法在Mindlin平板分析之應用。國立成功大學土木工程研究所碩士論文,2013。[36]許信翔,無元素法求解缺角及裂縫尖端附近應力之研究。國立成功大學土木工程研究所博士論文,2015。[37]李文歆,應用移動最小二乘法於平板大變形分析。國立成功大學土木工程研究所碩士論文,2015。[38]E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, 12: 69~76, 1945.
[39]R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME Journal of Applied Mechanics, 18: 1031~1036, 1951
[40]J.N. Reddy, Energy principles and variational methods in applied mechanics. John Wiley & Sons, New Jersey, 2002.
[41]楊桂通,彈性力學。第二版,高等教育出版社,北京市,2011。
[42]M.H. Sadd, Elasticity: theory, applications, and numerics. 3rd edition, Academic Press is an imprint of Elsevier, Amsterdam, Boston, 2014.
[43]黃建碩,移動最小二乘法。國立成功大學土木工程研究所碩士論文,2010。
[44]王重凱,移動最小功法在二為彈性力學問題分析之應用。國立成功大學土木工程研究所碩士論文,2017。[45]張雄、王天舒、劉岩,計算動力學。第二版,清華大學出版社,北京市,p.18,2015。
[46]I.H. Shames, C.L. Dym, Energy and finite element methods in structural mechanics. Taylor & Francis, Abingdon, p.372, 1985.
[47]S. Timoshenko, Theory of plates and shells. 2nd edition. McGraw-Hill, New York, 1959.