跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2025/11/27 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:苗延鈞
研究生(外文):Yen-ChunMiao
論文名稱:移動最小功法在Mindlin平板問題分析之應用
論文名稱(外文):Analysis of Plates by the Moving Least Work Method
指導教授:王永明
指導教授(外文):Yung-Ming Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:92
中文關鍵詞:無網格法移動最小二乘法移動最小功法板殼力學Mindlin-Reissner理論
外文關鍵詞:Meshless methodMoving Least-Squares methodMoving Least Work methodStress in Plates and ShellsMindlin-Reissner theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文應用移動最小功法(Moving Least Work method, MLW)對Mindlin平板問題進行數值模擬。本方法之特點為利用移動最小功法建立局部近似函數,在進行加權殘值方法時,其中是以殘值量乘以權函數再乘上其共軛的殘值量,使其含最小功的概念在其中,最後以置點的方式求解得到位移場和合應力場。
文中模擬了四邊簡支承平板承受雙正弦載重及多項式解析解引申出平板的邊界值問題,經由不同的基底階數和改變均勻佈點的數目去比較解析解以驗證移動最小功法的可行性,並分析其各變量最大值精度及誤差收斂的情形。
In this thesis, the Moving Least Work (MLW) method is used to model the mechanical behaviors of Mindlin Plates. This method uses the Moving Least Work approach to establish approximating functions. In the weight-residual problem precess, the residual value is multiplied by the weight function and multiplied by the conjugate residual value, so that it contains the conception of the least work. Finally we used the point collocation method to get the solutions of displacement fields and stress resultant fields.
The simply supported Mindlin plate is modeled under the sinusoidal load, and the boundary-value problems are solved by polynomial-analytic solutions. Using different basis functions and changing the numbers of the uniform-distributed points, we compared the numerical solutions with analytic solutions to validate the feasibility and convergence of the present method.
摘要 I
Abstract II
致謝 VIII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文架構 4
第二章 Mindlin平板理論 5
2.1 控制方程式 5
2.2 邊界條件 9
2.3 四邊簡支端平板解析解 11
2.4多項式解析解 13
第三章 移動最小功法理論 27
3.1 移動最小功法 27
3.2 基底函數 29
3.3 鄰近點數目與影響半徑 30
3.4 權重函數 30
3.5 均方根誤差 31
第四章 數值範例 32
4.1 四邊簡支端平板承受雙正弦載重 32
4.2 多項式解析解與數值解比較 33
4.2.1 平板主要承受均布荷重 33
4.2.2 平板主要承受線性荷重 33
4.2.3 平板主要承受線性荷重且在x=a處承受x向彎矩與x向橫向剪力作用 35
4.2.4 平板主要承受二次非線性荷重 36
4.2.5 平板主要承受二次非線性荷重與在"x=a" 處承受"x" 向彎矩與"x" 向橫向剪力作用 37
第五章 結論 38
參考文獻 39
參考文獻
[1]A.C. Ugural, Stress in Plates and Shells. 2nd edition, McGraw-Hill, New York, 1999.
[2]劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用。第二版,蒼海圖書資訊股份有限公司,新北市,2016。
[3]T. Belytscho, Y. Krongauz, D. Organ et al. Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg., 139: 3~47, 1996.
[4]S. Li, W.K. Liu. Meshfree and particle methods and their applications. Appl. Mech. Rev., 55(1):1~34, 2002.
[5]劉更、劉天祥、謝琴,無網格法及其應用。西北工業大學出版社,西安市,2005。
[6]L.B. Lucy, A numerical approach to the testing of the fission hypothesis. The Astron. J., 8(12): 1013~1024, 1977.
[7]D.H. Mclain, Drawing contours from arbitrary data points. Comput. J., 17: 318~324, 1974.
[8]R.E. Barnhill, Representation and approximation of surfaces, in Mathematical Software III, Academic Press, New York, 69~120, 1977.
[9]W.J. Gordon, J.A Wixom, Shepard’s method of metric interpolation to bivariate and multivariate data. Math. Comput., 32: 253~264, 1978.
[10]P. Lancaster, K. Salkauskas, Surface generated by moving least-squares methods. Math. Comput., 37: 141~158, 1981.
[11]T. Belytschko, Y.Y. Liu, L. Gu, Element-free Galerkin methods. Int. J. Numer. Mech. Engng., 37: 229~256, 1994.
[12]B. Nayroles, G. Touzot, P. Villon, Generalizing the elements. Comput. Meth., 10: 307~318, 1992.
[13]C.A. Duarte, J.T. Oden, Hp clouds: a h-p meshless methods. Numerical Methods for Partial Differential Equations, 12: 673~705, 1996.
[14]C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Engrg., 139: 237~262, 1996.
[15]W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods. Int J. Nemer. Methods Engrg., 20: 1081~1106, 1995.
[16]W.K. Liu, Y. Chen, Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids, 21: 901~931, 1995.
[17]W.K. Liu, S. Li, T. Belytscho, Moving least square Kernel Galerkin methods Part: Methodology and convergence. Computer Methods in Applied Mechanicsand Engineering, 143: 113~154, 1997.
[18]S. Li, W.K. Liu, Reproducing kernel Hierarchical partition of unity, Part I – formulation and theory. International Journal for Numerical Methods in Engineering, 45: 251~288, 1999.
[19]S. Li, W.K. Liu, Reproducing kernel Hierarchical partition of unity, Part II – applications. International Journal for Numerical Methods in Engineering, 45: 289~317, 1999.
[20]T. Zhu, J. Zhang, S.N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput. Mech., 21: 223~235, 1998.
[21]T. Zhu, J. Zhang, S.N. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Comput. Mech., 22: 174~186, 1998.
[22]S.N. Atluri, J. Sladek, V. Sladek et al. The local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity. Comput. Mech., 25: 180~198, 2000.
[23]S.N. Atluri, T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 22: 117~127, 1998.
[24]S.N. Atluri, J.Y. Chao, H.G. Kim, Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Comput. Mech., 24: 334~347, 1999.
[25]S.N. Atluri, H.G. Kim, J.Y. Chao, A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods. Comput. Mech., 24: 348~372, 1999.
[26]S.N. Atluri, T. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., 25: 169~179, 2000.
[27]G.R. Liu, Y.T. Liu, Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput. Mech., 26: 536~546, 2000.
[28]盛若磐,元素釋放法積分法則與權函數之改良。近代工程計算論壇論文集,國立中央大學土木系,2000。
[29]汪神義,複合層板之無網格法分析。國立成功大學土木工程研究所碩士論文,2003。
[30]鄭志源,微分再生核近似法於二維平板挫屈之分析。國立成功大學土木工程研究所碩士論文,2004。
[31]高嘉坤,無元素法在平板問題之應用。國立臺灣科技大學營建工程研究所博士論文,2005。
[32]P.H. Wen, Y.C. Hon, Geometrically Nonlinear Analysis of Reissner-Mindlin Plate by Meshless Computation. CMES., 21(3): 177~197, 2007.
[33]邱冠豪,Reissner混合變分原理無網格適點與無元素Galerkin方法之發展與其在功能性梯度材料板殼三維靜動態行為分析之應用。國立成功大學土木工程研究所博士論文,2011。
[34]陳皇甫,齊次基底移動最小二乘法在平板分析上之應用。國立成功大學土木工程研究所碩士論文,2011。
[35]徐傳婷,受束制之移動最小二乘法在Mindlin平板分析之應用。國立成功大學土木工程研究所碩士論文,2013。
[36]許信翔,無元素法求解缺角及裂縫尖端附近應力之研究。國立成功大學土木工程研究所博士論文,2015。
[37]李文歆,應用移動最小二乘法於平板大變形分析。國立成功大學土木工程研究所碩士論文,2015。
[38]E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, 12: 69~76, 1945.
[39]R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME Journal of Applied Mechanics, 18: 1031~1036, 1951
[40]J.N. Reddy, Energy principles and variational methods in applied mechanics. John Wiley & Sons, New Jersey, 2002.
[41]楊桂通,彈性力學。第二版,高等教育出版社,北京市,2011。
[42]M.H. Sadd, Elasticity: theory, applications, and numerics. 3rd edition, Academic Press is an imprint of Elsevier, Amsterdam, Boston, 2014.
[43]黃建碩,移動最小二乘法。國立成功大學土木工程研究所碩士論文,2010。
[44]王重凱,移動最小功法在二為彈性力學問題分析之應用。國立成功大學土木工程研究所碩士論文,2017。
[45]張雄、王天舒、劉岩,計算動力學。第二版,清華大學出版社,北京市,p.18,2015。
[46]I.H. Shames, C.L. Dym, Energy and finite element methods in structural mechanics. Taylor & Francis, Abingdon, p.372, 1985.
[47]S. Timoshenko, Theory of plates and shells. 2nd edition. McGraw-Hill, New York, 1959.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊