|
[1]經濟部能源局, “新及再生能源推動配套方案,” 17-Jan-2018. [2]吳進忠, “再生能源併聯運轉對電力調度的挑戰與機會,” 08-Aug-2018. [3]U. K. Das et al., “Forecasting of photovoltaic power generation and model optimization: A review,” Renew. Sustain. Energy Rev., vol. 81, pp. 912–928, Jan. 2018. [4]M. N. Akhter, S. Mekhilef, H. Mokhlis, and N. Mohamed Shah, “Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques,” IET Renew. Power Gener., vol. 13, no. 7, pp. 1009–1023, May 2019. [5]F. O. Hocaoğlu, Ö. N. Gerek, and M. Kurban, “Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks,” Sol. Energy, vol. 82, no. 8, pp. 714–726, Aug. 2008. [6]A. Mellit, H. Eleuch, M. Benghanem, C. Elaoun, and A. M. Pavan, “An adaptive model for predicting of global, direct and diffuse hourly solar irradiance,” Energy Convers. Manag., vol. 51, no. 4, pp. 771–782, Apr. 2010. [7]W. Ji and K. C. Chee, “Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN,” Sol. Energy, vol. 85, no. 5, pp. 808–817, May 2011. [8]P. Mandal, S. T. S. Madhira, A. U. haque, J. Meng, and R. L. Pineda, “Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques,” Procedia Comput. Sci., vol. 12, pp. 332–337, 2012. [9]R. Marquez, V. G. Gueorguiev, and C. F. M. Coimbra, “Forecasting of Global Horizontal Irradiance Using Sky Cover Indices,” J. Sol. Energy Eng., vol. 135, no. 1, p. 011017, Feb. 2013. [10]C. Voyant, P. Randimbivololona, M. L. Nivet, C. Paoli, and M. Muselli, “Twenty four hours ahead global irradiation forecasting using multi-layer perceptron: Twenty four hours ahead global irradiation forecasting,” Meteorol. Appl., vol. 21, no. 3, pp. 644–655, Jul. 2014. [11]V. Sharma, D. Yang, W. Walsh, and T. Reindl, “Short term solar irradiance forecasting using a mixed wavelet neural network,” Renew. Energy, vol. 90, pp. 481–492, May 2016. [12]V. Cherkassky and Y. Ma, “Practical selection of SVM parameters and noise estimation for SVM regression,” Neural Netw., vol. 17, no. 1, pp. 113–126, Jan. 2004. [13]G. Rubio, H. Pomares, I. Rojas, and L. J. Herrera, “A heuristic method for parameter selection in LS-SVM: Application to time series prediction,” Int. J. Forecast., vol. 27, no. 3, pp. 725–739, Jul. 2011. [14]M. Bouzerdoum, A. Mellit, and A. Massi Pavan, “A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant,” Sol. Energy, vol. 98, pp. 226–235, Dec. 2013. [15]W. Lee, K. Kim, J. Park, J. Kim, and Y. Kim, “Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks,” IEEE Access, vol. 6, pp. 73068–73080, 2018. [16]D. Lee and K. Kim, “Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information,” Energies, vol. 12, no. 2, p. 215, Jan. 2019. [17]“觀測資料查詢系統.” [Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp. [Accessed: 02-Jul-2019]. [18]“sklearn.linear_model.LinearRegression — scikit-learn 0.21.2 documentation.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html. [Accessed: 02-Jul-2019]. [19]“3.2.4.3.2. sklearn.ensemble.RandomForestRegressor — scikit-learn 0.21.2 documentation.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html. [Accessed: 02-Jul-2019]. [20]“3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor — scikit-learn 0.21.2 documentation.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html. [Accessed: 02-Jul-2019]. [21]“Simple deep MLP with Keras.” [Online]. Available: https://kaggle.com/fchollet/simple-deep-mlp-with-keras. [Accessed: 02-Jul-2019].
|