|
M. Oliver, & T. Jackson. (1999). The market for solar photovoltaics. Energy Policy, 27, 371-385.
European Photovoltaic Industry Association. (2014). Global Market Outlook for Photovoltaics 2014-2018. In T. Rowe (Ed.), (pp. 5-8). Brussels, Belgium: European Photovoltaic Industry Association.
BUSINESS SWEDEN TAIPEI. (2015). Opportunities for renewable energy and cleantech industry in Taiwan (pp. 1-15). Taipei, Taiwan: BUSINESS SWEDEN TAIPEI.
Bureau of Energy. (2015). 陽光屋頂政策推動有成 總統宣示支持再生能源發展. from http://web3.moeaboe.gov.tw/ECW/populace/news/News.aspx?kind=1&menu_id=41&news_id=4077
Bureau of Energy. (2013). 推動電力市場自由化. from http://web3.moeaboe.gov.tw/ECW_WEBPAGE/webpage/book4/page2.htm
Patrick Mathiesen, & Jan Kleissl. (2011). Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Solar Energy, 85, 967-977.
M. Zamo, O. Mestre, P. Arbogast, & O. Pannekoucke. (2014). A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production. Solar Energy, 105, 792-803.
Changsong Chen, Shanxu Duan, Tao Cai, & Bangyin Liu. (2011). Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy, 85, 2856-2870.
Jie Shi, Wei-Jen Lee, Yongqian Liu, Yongping Yang, & Peng Wang. (2012). Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines. INDUSTRY APPLICATIONS, 48, 1064-1069.
Marco Cococcioni, Eleonora D' Andrea, & Beatrice Lazzerini. (2011). 24-hour-ahead forecasting of energy production in solar PV systems. International Conference on Intelligent Systems Design and Applications, 11, 1276-1281.
Bjön Wolff, Elke Lorenz, & Oliver Kramer. (2013). Statistical Learning for Short-Term Photovoltaic Power Predictions. EUROPEAN CONFERENCE ON MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, 1-12.
Huan Long, Zijun Zhang, & Yan Su. (2014). Analysis of daily solar power prediction with data-driven approaches. Applied Energy, 126, 29-37.
Zhaoxuan Li, Mahbobur Rahman, Rolando Vega, & Bing Dong. (2016). A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting. Energies, 9.
A. Mellit , A. M. P. c., V. Lughi,. (2014). Short-term forecasting of power production in a large-scale photovoltaic plant. Solar Energy, 105, 401-413.
Cai Tao, Duan Shanxu, & Chen Changsong. (2010). Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement Power Electronics for Distributed Generation Systems, 773 - 777 doi: 10.1109/PEDG.2010.5545754
Atsushi Yona, T. S., Ahmed Yousuf Saber, Toshihisa Funabashi, Hideomi Sekine, Chul-Hwan Kim. (2007). Application of Neural Network to One-Day-Ahead 24 hours Generating Power Forecasting for Photovoltaic System. ISAP, 442-447. doi: 10.1109/ISAP.2007.4441657
Navin Sharma, Pranshu Sharma, David Irwin, & Prashant Shenoy. (2011). Predicting solar generation from weather forecasts using machine learning. Smart Grid Communications, 528-533. doi: 10.1109/SmartGridComm.2011.6102379
Hugo T.C. Pedro, & Carlos F.M. Coimbra. (2012). Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy, 86, 2017-2028.
Peder Bacher, Henrik Madsen, & Henrik Aalborg Nielsen. (2009). Online short-term solar power forecasting. Solar Energy, 83, 1772-1783.
徐森雄, 黃光賢, & 廖士吟. (2005). 泥岩坡面日射量之推估. Environment & Bioinformatics, 189, 211-220.
|