跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝東翰
研究生(外文):HSIEH,TUNG-HAN
論文名稱:摻雜銀與氧化石墨烯於二氧化鈦之奈米複合材料及其光催化探討
論文名稱(外文):Study on photocatalysis in TiO2-based nanocomposites coupled with silver and graphene oxide
指導教授:方得華方得華引用關係
指導教授(外文):FANG,TE-HUA
口試委員:傅耀賢李純怡
口試委員(外文):FU,YAO-HSIENLI,CHUN-YI
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:光催化
外文關鍵詞:photocatalysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
利用靜電紡織法制備半導體氧化物以及金屬氧化物半導體材料,搭配自製光觸媒設備光催化分解亞甲基藍(Methylene blue, MB)。並使用高解析掃描式電子顯微鏡、穿透式電子顯微鏡、X薄膜繞射儀,探討材料的結構性質與表面形貌。本研究以二氧化鈦(TiO2)奈米纖維結構製作出複合奈米材料為主題,探討以靜電紡織製程技術製作二氧化鈦奈米纖維的最佳參數,再以不同濃度摻雜硝酸銀和氧化石墨烯,找出最佳摻雜濃度比例,分別形成 TiO2/Ag 和TiO2/GO 異質結構;探討各材料使用不同退火溫度後對材料之影響。在紫外光以及可見光的光照下,TiO2/Ag複合光觸媒材料表現出比純TiO2光催化更好的光催化效率,提升了50%的降解率;本研究最後探討TiO2/GO在可外光和可見光的催化特性,最佳摻雜比例為7wt%氧化石墨烯,可有效提升42%的降解率。
The semiconductor oxide and the metal oxide semiconductor material are prepared by the electrospinning method, and the photocatalytic decomposition of methylene blue (MB) is carried out by using a self-made photocatalyst device. High-resolution scanning electron microscopy, transmission electron microscopy, and X-film diffractometer were used to investigate the structural properties and surface morphology of the material. The topic of this paper is to element with a tin oxide (TiO2) nanofiber structure, and discuss the optimal parameters for the production of tin oxide nanofibers using electrostatic spinning process technology, and doping with silver nitrate and graphene oxide at different concentrations. Formation of TiO2/Ag and TiO2/GO heterostructures, respectively exploring the influence of different materials after annealing temperature. Under the irradiation of ultraviolet light and visible light, the TiO2/Ag composite photocatalyst material exhibited better photocatalytic efficiency than pure TiO2 photocatalyst and improved the degradation rate by 50%. Finally, the study investigated the catalytic properties of TiO2/Go in ultraviolet light and visible light. The optimum doping ratio was 7wt% graphene oxide, which effectively improved the degradation rate by 42%.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 本文架構 5
第2章 基礎原理與文獻回顧 6
2.1 二氧化鈦 6
2.2 硝酸銀 8
2.3 氧化石墨烯 9
2.3.1 氧化石墨烯製備方法 11
2.3.1.1 還原氧化石墨法 11
2.3.1.2 化學氣相沉積法 11
2.3.1.3 液相剝離法 12
2.4 靜電紡絲 12
2.4.1 靜電紡絲影響參數 14
2.4.2 無機/高分子複合物材料 16
2.5 光觸媒介紹 16
2.5.1 光催化原理 16
2.5.2 量子尺寸效應 16
2.5.3 二氧化鈦光催化反應機制 17
2.5.4 半導體光觸媒種類 19
2.6 二氧化鈦改質 20
2.6.1 摻雜非金屬離子 20
2.6.2 摻雜金屬離子 20
第3章 實驗架構與分析設備 21
3.4 光催化實驗 35
3.5 實驗製程設備 37
3.6 實驗分析儀器 41
第4章 結果與討論 46
4.1 靜電紡絲法製備TiO2奈米纖維 46
4.1.1 熱重分析 46
4.1.2 X光繞射分析 47
4.1.2 高解析場發射電子顯微鏡分析 48
4.1.3 高解析穿透式電子顯微鏡 50
4.1.4 比表面積分析 52
4.1.5 光催化實驗 52
4.1.5.1 無添加光觸媒直接光照 52
4.1.5.2 pH值對亞甲基藍的影響 53
4.1.5.3 鍛燒溫度對材料催化性能影響 54
4.1.5.4 二氧化鈦奈米材料對紫外光、可見光的催化性能 55
4.2 靜電紡絲法製備TiO2/Ag奈米纖維 58
4.2.1 TiO2/Ag摻雜參數 58
4.2.2 熱重分析 58
4.2.3 X光繞射分析 59
4.2.4 高解析場發射電子顯微鏡分析 60
4.2.5 高解析穿透式電子顯微鏡 61
4.2.6 TiO2/Ag奈米材料對紫外光、可見光的催化性能 63
4.2.7 TiO2/Ag光催化機制 66
4.3 靜電紡絲法製備TiO2/GO奈米纖維 67
4.3.1 TiO2/GO摻雜參數 67
4.3.2 熱重分析 67
4.3.3 X光繞射分析 68
4.3.4 高解析場發射電子顯微鏡分析 69
4.3.5 高解析穿透式電子顯微鏡 70
4.3.6 TiO2/GO奈米材料對紫外光、可見光的催化性能 73
4.3.7 TiO2/GO光催化機制 76
第5章 結論 77
5.1 結論 77
5.2 未來展望 79
參考文獻 80
個人簡歷 86

[1] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972,238,37.
[2] Li, Y., Piret, F., Léonard, T., & Su, B. L. (2010). Rutile TiO2 inverse opal with photonic bandgap in the UV–visible range. Journal of colloid and interface science, 348(1), 43-48.
[3] Lu, Y., Yin, W. J., Peng, K. L., Wang, K., Hu, Q., Selloni, A., ... & Sui, M. L. (2018). Self-hydrogenated shell promoting photocatalytic H 2 evolution on anatase TiO2. Nature communications, 9(1), 2752..
[4] Fitra, M., Daut, I., Irwanto, M., Gomesh, N., & Irwan, Y. M. (2013). TiO2 dye sensitized solar cells cathode using recycle battery. Energy Procedia, 36, 333-340.
[5] Sharma, V., Kumar, S., & Krishnan, V. (2016). Shape selective Au-TiO2 nanocomposites for photocatalytic applications. Materials Today: Proceedings, 3(6), 1939-1948.
[6] Dahlan, D., Saad, S. K. M., Berli, A. U., Bajili, A., & Umar, A. A. (2017). Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E: Low-dimensional Systems and Nanostructures, 91, 185-189.
[7] Fu, F., Zhang, Y., Yan, L., Wang, Y., Gao, X., & Wang, D. (2017). Preparation of efficient Ag/AgBr/TiO2 visible light photocatalyst for destruction of MB. Journal of Materials Science: Materials in Electronics, 28(1), 691-696.
[8] Krzysztof Biernat, Artur Malinowski and Malwina Gnat, “The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy
[9] Bai, X., Sun, C., Xu, J., Liu, D., Han, Y., Wu, S., & Luo, X. (2018). Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems. Applied Surface Science, 430, 198-207.
[10] Zahed, M., Parsamehr, P. S., Tofighy, M. A., & Mohammadi, T. (2018). Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent. Chemical Engineering Research and Design, 138, 358-365.
[11] Pan, L., Wang, S., Xie, J., Wang, L., Zhang, X., & Zou, J. J. (2016). Constructing TiO2 pn homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy, 28, 296-303.
[12] Hao, C., Wang, W., Zhang, R., Zou, B., & Shi, H. (2018). Enhanced photoelectrochemical water splitting with TiO2@ Ag2O nanowire arrays via pn heterojunction formation. Solar Energy Materials and Solar Cells, 174, 132-139.
[13] Das, D. P., Baliarsingh, N., & Parida, K. M. (2007). Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. Journal of Molecular Catalysis A: Chemical, 261(2), 254-261.
[14] Kandiel, T. A., Ahmed, A. Y., & Bahnemann, D. (2016). TiO2 (B)/anatase heterostructure nanofibers decorated with anatase nanoparticles as efficient photocatalysts for methanol oxidation. Journal of Molecular Catalysis A: Chemical, 425, 55-60.
[15] Yamashita, Y., Ishiguro, K., Nakai, D., & Fuji, M. (2018). The synthesis of a porous-type of TiO2 with rutile structure. Advanced Powder Technology, 29(10), 2521-2526.
[16] Bellardita, M., Di Paola, A., Megna, B., & Palmisano, L. (2017). Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Applied Catalysis B: Environmental, 201, 150-158.
[17] Beegam, M. S., Ullattil, S. G., & Periyat, P. (2018). Selective Solar Photocatalysis by High Temperature Stable Anatase TiO2. Solar Energy, 160, 10-17.
[18] Dong, Y., Fei, X., Liu, Z., Zhou, Y., & Cao, L. (2017). Synthesis and photocatalytic redox properties of anatase TiO2 single crystals. Applied Surface Science, 394, 386-393..
[19] Burdett, J. K., Hughbanks, T., Miller, G. J., Richardson Jr, J. W., & Smith, J. V. (1987). Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 109(12), 3639-3646.
[20] Szymańska-Chargot, M., Gruszecka, A., Smolira, A., Bederski, K., Głuch, K., Cytawa, J., & Michalak, L. (2009). Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions. Journal of Alloys and Compounds, 486(1-2), 66-69.
[21] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
[22] Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856-5857.
[23] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. science, 324(5932), 1312-1314.
[24] Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
[25] Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), 453-475.
[26] Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621.
[27] Liu, C., Li, X., Liu, T., Liu, Z., Li, N., Zhang, Y., ... & Feng, X. (2016). Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. Journal of membrane science, 512, 1-12.
[28] Wei, H., Zhang, F., Zhang, D., Liu, Y., & Leng, J. (2015). Shape‐memory behaviors of electrospun chitosan/poly (ethylene oxide) composite nanofibrous membranes. Journal of Applied Polymer Science, 132(37).
[29] Gupta, P., Elkins, C., Long, T. E., & Wilkes, G. L. (2005). Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46(13), 4799-4810.
[30] Tao, J., & Shivkumar, S. (2007). Molecular weight dependent structural regimes during the electrospinning of PVA. Materials letters, 61(11-12), 2325-2328.
[31] Fukushima, S., Karube, Y., & Kawakami, H. (2010). Preparation of ultrafine uniform electrospun polyimide nanofiber. Polymer journal, 42(6), 514.
[32] Fuh, Y. K., Wu, Y. C., He, Z. Y., Huang, Z. M., & Hu, W. W. (2016). The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning. Materials Science and Engineering: C, 62, 879-887.
[33] Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 37(2), 573-578.
[34] Lee, J. H., & Kim, Y. J. (2014). Hydroxyapatite nanofibers fabricated through electrospinning and sol–gel process. Ceramics International, 40(2), 3361-3369.
[35] Jaoude, M. A., Polychronopoulou, K., Hinder, S. J., Katsiotis, M. S., Baker, M. A., Greish, Y. E., & Alhassan, S. M. (2016). Synthesis and properties of 1D Sm-doped CeO2 composite nanofibers fabricated using a coupled electrospinning and sol–gel methodology. Ceramics International, 42(9), 10734-10744.
[36] Kurtan, U., Topkaya, R., & Baykal, A. (2013). Sol–gel auto-combustion synthesis of PVP/CoFe2O4 nanocomposite and its magnetic characterization. Materials Research Bulletin, 48(11), 4889-4895.
[37] Henglein, A. (1989). Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical reviews, 89(8), 1861-1873.
[38] Huang, F., Yan, A., & Zhao, H. (2016). Influences of doping on photocatalytic properties of TiO2 photocatalyst. Semiconductor Photocatalysis—Materials, Mechanisms and Applications; Cao, W., Ed, 31-80.
[39] Lee, J., Bartelt-Hunt, S. L., Li, Y., & Gilrein, E. J. (2016). The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. Chemosphere, 154, 187-193.
[40] Koltsakidou, Α., Antonopoulou, M., Εvgenidou, Ε., Konstantinou, I., Giannakas, A. E., Papadaki, M., ... & Lambropoulou, D. A. (2017). Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study. Science of The Total Environment, 578, 257-267.
[41] Ortiz, L. G., Bonilla, H. G., Salazar, J. S., Olvera, M., Karthik, T. V. K., González, E. C., & Gómez, J. R. (2014). Low-temperature synthesis and gas sensitivity of perovskite-type LaCoO 3 nanoparticles. Journal of Nanomaterials, 2014, 61.
[42] Ghafari, E., Feng, Y., Liu, Y., Ferguson, I., & Lu, N. (2017). Investigating process-structure relations of ZnO nanofiber via electrospinning method. Composites Part B: Engineering, 116, 40-45.

[43] Li, X. Z., Li, F. B., Yang, C. L., & Ge, W. K. (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141(2-3), 209-217.
[44] Zhang, J., Cai, D., Zhang, G., Cai, C., Zhang, C., Qiu, G., ... & Wu, Z. (2013). Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Applied Clay Science, 83, 137-143.
[45] Liu, L., Guo, P., Chai, L., Shi, Q., Xu, B., Yuan, J., ... & Zhang, W. (2014). Fluorescent and colorimetric detection of pH by a rhodamine-based probe. Sensors and Actuators B: Chemical, 194, 498-502.
[46] Wang, T., Wei, J., Shi, H., Zhou, M., Zhang, Y., Chen, Q., & Zhang, Z. (2017). Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E: Low-dimensional Systems and Nanostructures, 86, 103-110.
[47] Wang, L., Ali, J., Zhang, C., Mailhot, G., & Pan, G. (2017). Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. Journal of Environmental Chemical Engineering..
[48] Alazmi, A., Rasul, S., Patole, S. P., & Costa, P. M. (2016). Comparative study of synthesis and reduction methods for graphene oxide. Polyhedron, 116, 153-161.
[49] Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., ... & Guo, Z. (2017). Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Applied Catalysis B: Environmental, 201, 470-478.
[50] 楊士弘,“金屬氧化物奈米結構應用於氣體感測器.”國立高雄應用科技大學機械工程系碩士班, 高雄市, 2015.
[51] 郭恩宇,“La0.8Sr0.2Co0.5Ni0.5O3 - ZnO異質結構之特性與應用.”國立高雄應用科技大學機械工程系碩士班, 高雄市, 2018.
[52] 吳佩岑,“二氧化鈦奈米管於濕度與氣體感測器之研究.”國 立高雄應用科技大學機械工程系碩士班, 高雄市, 2014.
[53] 黃伯融,“以靜電紡絲製備氧化鋅奈米線於氣體感測研究”,國立成功大學碩士論文, 2008。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top