跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈情
研究生(外文):Ching Shen
論文名稱:合成核殼型奈米顆粒及其應用於剪切增稠流體之研究探討
論文名稱(外文):Synthesis of Core-Shell Nanoparticles and Its Application as Shear Thickening Fluid
指導教授:郭文正郭文正引用關係戴子安戴子安引用關係
指導教授(外文):Wen-Jeng GuoChi-An Dai
口試委員:程耀毅
口試日期:2013-12-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:51
中文關鍵詞:剪切增稠流體液態裝甲黏度流變性質核殼型顆粒
外文關鍵詞:shear thickening fluidliquid armorviscosityrheological propertycore/shell particle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:853
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
剪切增稠流體(shear thickening fluid),為非牛頓流體的一種,其特徵為在低剪切速率時黏度較低,表現出液體之狀態,而於高剪切速率下,黏度則會急速上升。此種流體性質可被應用於國防液態裝甲(liquid armor)之研究,即在平日低速活動時呈現有如輕柔衣物的特性,但若突然施予高速衝擊,黏度會瞬間提高,產生固體之特性,達到防護作用。目前液態裝甲主要是以二氧化矽作為剪切增稠流體中之主要顆粒,但研究結果顯示其抗穿刺效果極為有限,僅能抵檔低速外力之撞擊。因此本研究提議將具有剪切增稠性質之二氧化矽合成在高硬度的氧化鋁上,合成核殼型(氧化鋁/二氧化矽)奈米微粒作為其分散相,結合氧化鋁及二氧化矽之優點,有效提升液態裝甲之防護作用。本研究使用溶膠-凝膠法(sol-gel method)將氧化鋁奈米微粒與四乙氧基矽烷(TEOS)進行縮合反應,在氧化鋁奈米微粒上長出二氧化矽外殼,且利用動態光散射粒徑分析儀、穿透式電子顯微鏡及介面電位分析儀量測證明成功的合成出核殼型(氧化鋁/二氧化矽)奈米微粒。再將核殼型(氧化鋁/二氧化矽)奈米微粒利用超音波震盪棒分散在聚乙二醇中並配製成不同體積分率之分散液,利用流變儀(rheometer)觀察二氧化矽披覆在氧化鋁表面上的流變性質,也就是其在高剪切速率下是否有剪切增稠效應,最後探討核殼型(氧化鋁/二氧化矽)奈米微粒之剪切增稠現象應用於液態裝甲之可行性及全面最佳性質。

Shear thickening fluid, a type of non-Newtonian fluid, changes viscosity based on shear rate. It has low viscosity at low shear rates, and high viscosity at high shear rates. Thus, this fluid stays mobile under normal conditions, but swiftly hardens upon high-speed impact, resulting in a material useful in liquid armor. So far, most studies have focused on silica-based material as the primary particles in shear thickening fluids, but they often show limited resistance to puncturing. Herein, an approach to synthesize core-shell (alumina/silica) nanoparticles, which can be used as the dispersed phase in the liquid armor materials. Notably, the combination of alumina and silica materials shows significant advantage for enhancing the protective properties of the liquid armor. The core-shell nanoparticles in this study were synthesized using a sol-gel process wherein the silica shell was grown on alumina nanoparticles via a condensation reaction with TEOS. Subsequently, characterization was performed through dynamic light scattering, TEM, and zeta potential measurements. Rheometer measurements were also made using the as-synthesized nanoparticles (treated via sonication) dispersed in a polyethylene glycol medium with varying volume fractions. Thus, the rheological properties of the core-shell system could be investigated and the shear thickening phenomenon observed at high shear rates. Finally, the application of alumina/silica core-shell nanoparticles in liquid armor and the optimization of their comprehensive feasibility and rheological properties are discussed.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
第二章 文獻回顧 2
2.1 剪切增稠流體 2
2.1.1 剪切增稠流體介紹 2
2.1.2 剪切增稠流體應用 6
2.1.3 影響剪切增稠流體之因素 9
2.2 溶膠-凝膠法 13
2.3 膠體懸浮液之分散 16
2.4 核殼型奈米結構介紹 18
2.5 流變學 19
2.5.1 流體類型 19
2.5.2 流變儀 20
第三章 實驗 22
3.1 實驗前準備 22
3.1.1 實驗藥品 22
3.1.2 實驗儀器 23
3.2 實驗步驟 24
3.2.1 製備氧化鋁分散於聚乙二醇之剪切增稠分散液 24
3.2.2 利用溶膠-凝膠法合成核殼型(氧化鋁/二氧化矽)奈米微粒 26
3.2.3 製備核殼型(氧化鋁/二氧化矽)奈米微粒分散於聚乙二醇之剪切增稠分散
液 27
3.2.4 剪切增稠分散液之流變測試 28
第四章 實驗成果與探討 29
4.1 粒徑檢測分析 29
4.1.1 氧化鋁及核殼型(氧化鋁/二氧化矽)之粒徑檢測 29
4.1.2 探討氧化鋁及核殼型奈米微粒之粒徑檢測結果 30
4.2 穿透式電子顯微鏡(TEM)檢測 31
4.2.1 氧化鋁及核殼型奈米微粒(氧化鋁/二氧化矽)之TEM檢測 31
4.2.2 探討氧化鋁及核殼型奈米微粒之TEM檢測結果 32
4.3 表面電位檢測分析 33
4.3.1 氧化鋁之表面電位檢測 33
4.3.2 核殼型奈米微粒(氧化鋁/二氧化矽)之表面電位檢測 34
4.3.3 探討氧化鋁及核殼型奈米微粒表面電位之檢測結果 35
4.4 流變儀量測分散液之流變行為 37
4.4.1 氧化鋁於聚乙二醇中黏度對剪切速率之關係 37
4.4.2 二氧化矽於聚乙二醇中黏度對剪切速率之關係 38
4.4.3 核殼型(氧化鋁/二氧化矽)於聚乙二醇中黏度對剪切速率之關係 39
4.4.4 探討核殼型(氧化鋁/二氧化矽)於聚乙二醇中之流變行為 40
4.4.5 探討懸浮度對於流變儀量測結果之影響 41
4.5 核殼型(氧化鋁/二氧化矽)奈米微粒外殼(二氧化矽)生成速率之探討 42
4.5.1 反應溫度對核殼型奈米微粒外殼(二氧化矽)生成速率之影響 42
4.5.2 添加TEOS(ethanol)之速率對核殼型奈米微粒外殼(二氧化矽)生成速率
之影響 42
4.5.3 pH值對於核殼型奈米微粒外殼(二氧化矽)生成速率之影響 43
第五章 結論及未來目標 44
參考文獻 47
附錄
符號彙編 51


1. R. G. Egres Jr.; M. J. Decker.; C. J. Halbach.; Y. S. Lee.; J. E. Kirkwood.; K. M.
Kirkwood.; N. J. Wagner. Composites Science and Technology 2007, 67,
565-578.
2. B. J. Maranzano.; N. J. Wagner.; Journal of Rheology 2001, 45, 1205-1222.
3. S.-S. Chien, “Synthesis of Alumina and Core-Shell Nanoparticles and Their
Application as Shear Thickening Fluid”, National Taiwan University;
Master Thesis, July, 2013.
4. http://www.genius-tech.com.tw/page9.php
5. Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in
concentrated suspensions. I. Observation of a &;#64258;owinstability. J Rheol 16:155–
173
6. Hoffman RL (1974) Discontinuous and dilatant viscosity behavior in
concentrated suspensions. II. Theory
7. Bender J, Wagner NJ (1996) Reversible shear thickening inmonodisperse and
bidisp erse colloidal dispersions. J Rheol 40:899–916
8. J. W. Bender.; N. J. Wagner.; Concentrated Suspensions 1995, 172, 171-184.
9. D. Breit.; Nonlinear Analysis: Theory, Methods &; Applications 2012, 75,
5549-5560.
10. N. J. Wagner.; John F. Brady.; Physics Today 2009, 62, 27-32.
11. M. J. Deckera.; C. J. Halbacha.; C. H. Nama.; N. J. Wagnera.; E. D. Wetzelb.;
Composites Science and Technology 2007, 67, 565-578.
12. E. D. Wetzel.; Y. S. Lee.; R. G. Egres Jr.; K. M. Kirkwood.; J. E.
Kirkwood.; N. J. Wagner.; Industrial Forming Processes 2004
13. E. D. Wetzel.; N. J. Wagner.; Army Science Conference 2002.
14. B. J. Maranzano and N. J. Wagner, "The Effects of Particle Size on Reversible
Shear Thickening of Concentrated Colloidal Dispersions," Journal of
Chemical Physics, 2001, 114(23), pp. 10514.
15. H. A. Barnes, "Shear-Thickening Dilatancy," in Suspensions of Nonaggregating
Solid Particles Dispersed in Newtonian Liquids," Journal of Rheology, 1989,
33(2), pp. 329-366.
16. R Larson ;The Structure and Rheology of Complex Fluids 2011
17. Y. S. Lee, E. D. Wetzel and N. J. Wagner, "The Ballistic Impact Characteristics
of KevlarR Woven Fabrics Impregnated with a Colloidal Shear Thickening
Fluid," Journal of Materials Science, 2003, 38(13), pp. 2825-2833
18. L. B. Capeletti.; J. Henrique.; Z. D. Santos.; E. Moncada.; Z. N. Da Rocha.;
I. M. Pepe.; Powder Technology 2013, 237, 117-124
19. I. Chepurna.; R. Smotraev.; V. Kanibolotsky.; V. Strelko.; Journal of Colloid
and Interface Science 2011, 356, 404-411
20. D. Teoli.; L. Parisi.; N. Realdon.; M. Guglielmi.; A. Rosato.; M. Morpurgo.;
Journal of Controlled Release 2006, 116, 295-303
21. C. Oh.; Y. G. Lee, T. S. Choi.; C. U. Jon.; S. G. Oh.; Colloids and Surfaces
2009, 349, 145-150
22. P. S. Singh.; Journal of Colloid and Interface Science 2008, 325, 207-214
23. A. Hou.; Y. Shi.; Y. Yu.; Carbohydrate Polymers 2009, 77, 201-205
24. H. Ye.; X. Zhang.; Y. Zhang.; L. Ye.; B. Xiao.; H. Lv.; B. Jiang.; Solar Energy
Materials and Solar Cells 2011, 95, 2347-2351
25. S. R. Veith.; M. Perren.; S. E. Pratsinis.; Journal of Colloid and Interface
Science 2005, 283, 495-502
26. I. M. Arafa. ; M. M. Fares. ; A. S. Barham.; European Polymer Journal 2004,
40, 1477-1487
27. Y. Xiao.; J. Shen.; Z. Xie.; B. Zhou.; G. Wu.; J. Mater. Sci. 2007, 23,
504-508.
28. K. M. S. Meera.; R. M. Sankar. ; A. Murali.; S. N. Jaisankar.; A. B. Mandal.;
Colloids and Surfaces 2012, 90, 204-210
29. V. Purcar.; I. Stamatin.; O. Cinteza.; C. Petcu.; V. Raditoiu.; M. Ghiurea.;
T. Miclaus.; Surface and Coatings Technology 2012, 206, 4449-4454
30. 薛敬和, "高分子化學," 台北, 高立圖書有限公司, 1998.
31. 劉陽橋, 高孫, "奈米粉體的分散及表面改性," 台北, 五南圖書出版股份有
限公司, 2005
32. 馬振基, "奈米材料科技原理與應用," 台北, 全華科技圖書股份有限公司,
2003.
33. R. R. Rao, H. N. Roopa and T. S. Kannan," Effect of PH on the Dispersability
of Silicon Carbide Powders in Aqueous Media," Ceramics International, 1999,
25(3), pp. 223-230.
34. B. P. Singh, S. Bhattacharjee, L. Besra and D. K. Sengupta, "Evaluation of
Dispersibility of Aqueous Alumina Suspension in Presence of Darvan C,"
Ceramics International, 2004, 30(6), pp. 939-946.
35. W. J. Tseng and C. H. Wu, "Sedimentation, Rheology and Particle-Packing
Structure of Aqueous Al2O3 Suspensions," Ceramics International, 2003,
29(7), pp. 821-828.
36. J.J. Lin, “Study of Impact Resistance of Composites Containing Shear
Thickening Fluid”, National Taipei University of Technology; Master Thesis,
July, 2013.
37. L. A.Clementi.; J. R. Vega.; L. M. Gugliotta.; A. Quirantes.; Journal of
Quantitative Spectroscopy and Radiative Transfer 2012, 113, 2255-2264.
38. P. V. Christensen.; M. L. Christensen.; K.Keiding. Journal of Colloid and
Interface Science 2011, 356, 681-689.
39. Y. J. Chen, “Concentrated dispersion or colloidal gel formed by SiC particles”,
National Central University; Master Thesis, June, 2009.
40. S.-F. Wang et al. / Materials Science and Engineering A 395(2005) 148–152
41. J. W. Bender.; N. J. Wagner. Concentrated Suspensions 1995, 172, 171-184


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top