跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/20 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫穩翔
研究生(外文):Wen-Xiang Sun
論文名稱:應用自動相機估算食蟹獴(Herpestes urva)密度及豐富度指標之評估
論文名稱(外文):Evaluation of Camera Trapping in Estimating Crab-eating Mongoose (Herpestes urva) Density and Abundance Index
指導教授:陳貞志陳貞志引用關係
指導教授(外文):Chen-Chin Chen
口試委員:裴家騏姜博仁陳添喜
口試委員(外文):Jai-Chyi PeiPo-Jen ChiangTien-Hsi Chen
口試日期:2017-01-13
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:野生動物保育研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:族群絕對密度平均相機偵測率相關性食蟹獴
外文關鍵詞:population densityphotographic ratecorrelationcrab-eating mongoose
相關次數:
  • 被引用被引用:1
  • 點閱點閱:874
  • 評分評分:
  • 下載下載:145
  • 收藏至我的研究室書目清單書目收藏:0
族群密度為野生動物經營管理中非常重要之資訊,準確的估算族群密度有其必要性。紅外線自動照相機的發展讓研究人員能夠快速且低人力、低干擾的進行野生動物相對族群豐富度調查,並延伸出平均相機偵測率用來比較不同時間及空間物種之族群密度,然而平均相機偵測率是否能夠準確反應族群密度有待驗證。為驗證絕對族群密度與平均相機偵測率之相關性,本研究(1)應用絕對族群密度估算法中的標記再發現法(Mark-resight)進行食蟹獴(Herpestes urva)之族群豐富度估算及計算族群密度;(2)評估食蟹獴族群密度與平均相機偵測率之相關性;(3)並探討可能影響族群絕對密度與平均相機偵測率相關性之因子。本研究分別於屏東大漢林道、高雄扇平、屏東南仁山、台東成功及花蓮源和進行一至三次的食蟹獴族群密度及平均相機偵測率估算。結果顯示各相機再發現期食蟹獴平均族群密度每平方公里約有17.06±12.5隻;各相機再發現期平均相機偵測率25.67±15.25;相關性檢定結果發現絕對族群密度與平均相機偵測率不具正線性相關(Spearman, r=-0.43,p=0.42),然而本研究樣本數少,容易影響相關性結果,因此未來仍需增加樣本數,才能釐清兩者之間的關係。另外以個體拍攝率比值比判斷個體間拍攝率差異程度,在封閉族群條件下,總計52隻被捕捉標記之食蟹獴個體中有35隻個體(66%)的拍攝次數為0,扣除大漢林道第二回合及南仁山第一回合,其他相機再發現期皆有1至3隻個體拍攝率比值比範圍從1.43至14.86,且以雌性成體為主。因此,平均相機偵測率無法反應族群密度的可能原因在於樣區族群中個體間拍攝率不平均所導致,個體間的拍攝率差異可能與個體的活動領域、活動領域面積及自動相機架設位置有關。在本研究的條件狀況下,發現食蟹獴之絕對密度與單純應用紅外線自動相機所估算之平均相機偵測率間不具正線性相關,因此同樣條件下,不建議應用平均相機偵測率於評估食蟹獴族群密度及其動態,另外基於個體間拍攝率不一致,建議應用紅外線自動相機作為其他野生動物物種之相對密度動態指標前應先行驗證,以確認指標之正確性。
Population density is an critical information for wildlife management, therefore, it is necessary to estimate population density accurately. The development of infrared auto-triggered camera has facilitated the researchers to collect the data of relative population abundance with advantages, including rapid and automatic data collection with low disturbance. However, the relationship between absolute density and relative abundance index of photographic rate were rarely validated. The objectives of this study included: (1) using Mark-resight model to estimate population density of crab-eating mongoose(Herpestes urva); (2) evaluating the correlation between the population density and photographic rate; (3)discussing the possible factors which influenced the correlation. Estimation of absolute densities and photographic rates were conducted in the study areas of Dahan forest-road, Nanren Lake Ecological Reserve, Shanping Forest Ecological Garden, Chenggung and Yuanhe. Estimated mean absolute density and mean photographic rate of crab-eating mongoose was 17.06±12.5 indviduals per km2 and 25.67±15.25, respectively. Spearman’s rank correlation coefficient for testing correlation between photographic rate and absolute density was -0.43 (p = 0.42). However, the number of samples in this study is small, easy to affect the correlation results, so the future still need to increase the number of samples in order to clarify the relationship between the two. The ratios of photographic rate of each individual were created for comparing the differences of photographic rate among marked individuals. Results showed that the ratio of photographic rate among 35 (66%) of the 52 marked crab-eating mongooses were 0. Nonetheless, the ratios of photographic rate of some female individuals in all sampling area were ranged from 1.43 to 14.86. The results indicated a non-positive linear relationship and un-equal photographic rate among the individuals was the primary factor that affected the correlation. The differences of home range,home range area, and the site of auto-triggered camera installed might be the reasons that induced the heterogeneous of photographic rate. Under the study condition, this study demonstrated that the absolute density of crab-eating mongoose did not correlate with the photographic rate. Therefore, it is not recommended to use the photographic rate as an index of population density of crab eating mongoose. In addition, validation before the use of photographic rate as a density index for other species in different spatial and temporal component was suggested.
摘要......................................................I
Abstract................................................III
謝誌......................................................V
目錄.....................................................VII
圖目錄....................................................IX
表目錄....................................................X
壹、前言...................................................1
貳、文獻回顧...............................................3
一、族群豐富度與密度的重要性及族群豐富度估算方法之分類.........3
二、絕對族群密度的優缺點、應用及限制.........................5
三、相對豐富度指標的優缺點、應用及限制.......................6
四、絕對族群密度與相對豐度指標之關係.........................7
參、材料與方法.............................................8
一、研究樣區...............................................8
(一)屏東大漢林道...........................................8
(二)高雄扇平森林遊樂區......................................8
(三)屏東南仁湖生態保護區....................................9
(四)台東成功樣區...........................................9
(五)花蓮源和樣區...........................................9
二、實驗流程...............................................9
三、相機及陷阱架設........................................10
(一)紅外線自動照相機架設...................................10
(二)捕捉籠陷阱架設........................................11
四、野生動物捕捉麻醉及上標.................................11
五、資料分析..............................................12
(一)相對豐富度指標:平均相機偵測率...........................12
(二)絕對族群密度估算:標記再發現法...........................13
(三)封閉族群假設檢定......................................14
(四)個體拍攝率差異程度.....................................15
(五)相關性分析............................................15
肆、結果..................................................17
一、標記與再發現期及食蟹獴個體組成..........................17
(一)、標記期..............................................17
(二)、再發現期............................................17
(三)、上標個體拍攝隻次數比例...............................18
二、族群密度估算與平均相機偵測率相關性分析...................18
(一)、食蟹獴之族群密度.....................................18
(二)、食蟹獴之平均相機偵測率...............................19
(三)、食蟹獴族群密度與平均相機偵測率相關性分析...............19
三、個體異質率及拍攝率差異程度..............................20
(一)、個體異質率..........................................20
(二)、食蟹獴個體拍攝率差異程度.............................21
伍、討論..................................................23
一、食蟹獴族群密度估算.....................................23
二、絕對族群密度與相對豐富度指標之相關性....................24
三、影響平均相機偵測率之因子評估............................25
陸、結論..................................................28
參考文獻..................................................29
作者簡介..................................................54
毛俊傑、鄭祖浩、鄭倩嬬、戴士恩、蘇庭弘(2006)。大礁溪林場野生哺乳動物資源調查。宜蘭大學生物資源學刊 3(1):43-51。
姚正得、林明璋、林宏儒(2016)。食肉目動物快速調查。台灣生物多樣性研究 18(3):217-230。
范震華、林宗以、張書德、楊書懿、翁國精(2014)。台灣水鹿族群密度估算方法評估。台灣生物多樣性研究 16(4):309-322。
翁紹益(2010)。福山試驗林食蟹獴 (Herpestes urva) 之社會結構。臺灣大學生態學與演化生物學研究所學位論文。
莊順安(1994)。福山森林生態系三種食肉目動物 (麝香貓, 食蟹獴, 鼬獾) 的食性研究。國立台灣大學動物學研究所碩士 論文。
陳德豪(1997)。福山試驗林食蟹(Herpestes urva) 的巡遊行為與空間分布。國立台灣大學動物學研究所碩士論文。
黃美秀(1995)。福山試驗林食蟹獴族群與資源利用之研究。國立台灣大學動物學研究所碩士論文。
黃美秀、簡熒芸(2007)。玉山國家公園楠溪林道較大型哺乳動物之監測。臺灣林業科學 22(2):135-147。
端木茂甯(2001)。福山試驗林食蟹獴 (Herpestes urva) 的棲地利用。國立臺灣大學動物學研究所碩士論文。
裴家騏(2002)。墾丁國家公園陸域野生哺乳類動物調查研究(第三年)。 內政部營建署墾丁國家公園保育研究報告第121號,68 頁。
裴家騏(2011)。100 年度墾丁國家公園陸域野生哺乳類動物調查。 墾丁國家公園處委託研究報告國科會RGB編號: PG10003-0283,75 頁。
裴家騏、姜博仁(2002)。大武山自然保留區及其週邊地區雲豹及其他中大型哺乳動物之現況與保育研究(一)。 行政院農委會林務局保育研究系列90-6號,60 頁。
Alonso, R. S., B. T. McClintock, L. M. Lyren, E. E. Boydston, and K. R. Crooks (2015) Mark-recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study. PloS one 10:e0123032.
Anderson, and D. Raymond (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer.
Arcese, P., and J. N. Smith (1988) Effects of population density and supplemental food on reproduction in song sparrows. The Journal of Animal Ecology:119-136.
Blake, J. G., and D. Mosquera (2014) Camera trapping on and off trails in lowland forest of eastern ecuador: does location matter?
Borchers, D. L., and M. Efford (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64:377-385.
Burnham, K. P., and D. Anderson (2003) Model selection and multi-model inference. A Pratical informatio-theoric approch. Sringer.
Burton, A. C., E. Neilson, D. Moreira, A. Ladle, R. Steenweg, J. T. Fisher, E. Bayne, and S. Boutin (2015) REVIEW: Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52:675-685.
Carbone, C., S. Christie, K. Conforti, T. Coulson, N. Franklin, J. Ginsberg, M. Griffiths, J. Holden, K. Kawanishi, and M. Kinnaird (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation 4:75-79.
Cooch, E., and G. White (2010) Program MARK: a gentle introduction. Colorado State University, Fort Collins, USA.
Debbie, J. (1991) Rabies control of terrestrial wildlife by population reduction. The natural history of rabies. 2nd ed. Boca Raton, Fla: CRC Press Inc:477-489.
Foster, R. J., and B. J. Harmsen (2012) A critique of density estimation from camera‐trap data. The Journal of Wildlife Management 76:224-236.
Gerrodette, T., and W. G. Gilmartin (1990) Demographic consequences of changed pupping and hauling sites of the Hawaiian monk seal. Conservation Biology 4:423-430.
Harrison, H. (2015) A comparison of camera trapping and live trapping techniques for the surveying of small mammals in sabah, malaysian borneo. University of Bristol.2015
Hein, E. W., and W. F. Andelt (1995) Estimating coyote density from mark-resight surveys. The Journal of Wildlife Management:164-169.
Jirotkul, M. (1999) Population density influences male–male competition in guppies. Animal Behaviour 58:1169-1175.
Jolly, G., and J. Dickson (1983) The problem of unequal catchability in mark-recapture estimation of small mammal populations. Canadian Journal of Zoology 61:922-927.
Karanth, K. U., R. S. Chundawat, J. D. Nichols, and N. Kumar (2004) Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture–recapture sampling. Animal Conservation 7:285-290.
Kermack, W. O., and A. G. McKendrick (1927) A contribution to the mathematical theory of epidemics. Pages 700-721 in Proceedings of Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 115:700-721.
Larrucea, E. S., P. F. Brussard, M. M. Jaeger, and R. H. Barrett (2007) Cameras, coyotes, and the assumption of equal detectability. The Journal of Wildlife Management 71:1682-1689.
Lehman, A. (2005) JMP for basic univariate and multivariate statistics: a step-by-step guide. SAS Institute.
Maffei, L., A. J. Noss, S. C. Silver, and M. J. Kelly (2011) Abundance/density case study: Jaguars in the Americas. Pages 119-144 in Camera traps in animal ecology. Springer.
McCallum, H., N. Barlow, and J. Hone (2001) How should pathogen transmission be modelled? Trends in ecology & evolution 16:295-300.
McCarthy, K. P., T. K. Fuller, M. Ming, T. M. McCarthy, L. Waits, and K. Jumabaev (2008) Assessing estimators of snow leopard abundance. The Journal of Wildlife Management 72:1826-1833.
Mills, L. S. (2012) Conservation of wildlife populations: demography, genetics, and management. John Wiley & Sons.
Minta, S., and M. Mangel (1989) A Simple Population Estimate Based on Simulation for Capture‐Recapture and Capture‐Resight Data. Ecology 70:1738-1751.
Molles, M. C., and J. F. Cahill (1999) Ecology: concepts and applications. WCB/McGraw-Hill Dubuque, IA.
Nichols, J. D. (1992) Capture-recapture models. BioScience:94-102.
Noss, A., R. Cuéllar, J. Barrientos, L. Maffei, E. Cuéllar, R. Arispe, D. Rúmiz, and K. Rivero (2003) A camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian dry forests. Tapir conservation 12:24-32.
O'Brien, T. G., M. F. Kinnaird, and H. T. Wibisono (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation 6:131-139.
O’Brien, T. G. (2011) Abundance, density and relative abundance: a conceptual framework. Pages 71-96 in Camera Traps in Animal Ecology. Springer.
Ogurlu, İ. (1997) The Estimation of a Red Deer Population Density based on Pellet Counts. TURKISH JOURNAL OF ZOOLOGY 21:399-408.
Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson (1978) Statistical inference from capture data on closed animal populations. Wildlife monographs:3-135.
Pereira, J. A., N. G. Fracassi, and M. M. Uhart (2006) Numerical and spatial responses of Geoffroy's cat (Oncifelis geoffroyi) to prey decline in Argentina. Journal of Mammalogy 87:1132-1139.
Primack, R. B. (1993) Essentials of conservation biology. Volume 23.Sinauer Associates Sunderland, Massachusetts.
Rich, L. N., M. J. Kelly, R. Sollmann, A. J. Noss, L. Maffei, R. L. Arispe, A. Paviolo, C. D. De Angelo, Y. E. Di Blanco, and M. S. Di Bitetti (2014) Comparing capture-recapture, mark-resight, and spatial mark-resight models for estimating puma densities via camera traps. Journal of Mammalogy 95:382-391.
Rivero, K., D. I. Rumiz, and A. B. Taber (2004) Estimating brocket deer (Mazama gouazoubira and M. americana) abundance by dung pellet counts and other indices in seasonal Chiquitano forest habitats of Santa Cruz, Bolivia. European Journal of Wildlife Research 50:161-167.
Rosatte, R., D. Donovan, M. Allan, L.-A. Howes, A. Silver, K. Bennett, C. MacInnes, C. Davies, A. Wandeler, and B. Radford (2001) Emergency response to raccoon rabies introduction into Ontario. Journal of Wildlife Diseases 37:265-279.
Rosatte, R., M. Ryckman, K. Ing, S. Proceviat, M. Allan, L. Bruce, D. Donovan, and J. C. Davies (2010) Density, movements, and survival of raccoons in Ontario, Canada: implications for disease spread and management. Journal of Mammalogy 91:122-135.
Rovero, F., and A. R. Marshall (2009) Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology 46:1011-1017.
Rowcliffe, J. M., J. Field, S. T. Turvey, and C. Carbone (2008) Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45:1228-1236.
Royle, J. A. (2011) Hierarchical spatial capture–recapture models for estimating density from trapping arrays. Pages 163-190 in Camera Traps in Animal Ecology. Springer.
Séquin, E. S., M. M. Jaeger, P. F. Brussard, and R. H. Barrett (2003) Wariness of coyotes to camera traps relative to social status and territory boundaries. Canadian Journal of Zoology 81:2015-2025.
Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. J. Cabin, J. E. Cohen, and N. C. Ellstrand (2001) The population biology of invasive specie. Annual review of ecology and systematics:305-332.
Sarmento, P., J. Cruz, C. Eira, and C. Fonseca (2009) Evaluation of camera trapping for estimating red fox abundance. The Journal of Wildlife Management 73:1207-1212.
Shaffer, M. L. (1981) Minimum population sizes for species conservation. BioScience 31:131-134.
Silveira, L., A. T. Jacomo, and J. A. F. Diniz-Filho (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation 114:351-355.
Sollmann, R., A. Mohamed, H. Samejima, and A. Wilting (2013) Risky business or simple solution–Relative abundance indices from camera-trapping. Biological Conservation 159:405-412.
Stanley, T., and J. Richards (2004) CloseTest: a program for testing capture–recapture data for closure [Software Manual]. US Geological Survey, Fort Collins Science Center.
Stephens, P., O. Y. Zaumyslova, D. Miquelle, A. Myslenkov, and G. Hayward (2006) Estimating population density from indirect sign: track counts and the Formozov–Malyshev–Pereleshin formula. Animal Conservation 9:339-348.
Todd, A. W., L. B. Keith, and C. A. Fischer (1981) Population ecology of coyotes during a fluctuation of snowshoe hares. The Journal of Wildlife Management:629-640.
Trolle, M., and M. Kéry (2003) Estimation of ocelot density in the Pantanal using capture-recapture analysis of camera-trapping data. Journal of Mammalogy 84:607-614.
Wegge, P., C. P. Pokheral, and S. R. Jnawali (2004) Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Animal Conservation 7:251-256.
Williams, B. K., J. D. Nichols, and M. J. Conroy (2002) Analysis and management of animal populations. Academic Press.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top