|
[1]Adnan, R., Ruslan, F. A., Samad, A. M. and Zain, Z. M. (2013). New Artificial Neural Network and Extended Kalman Filter hybrid model of flood prediction system. In Signal Processing and its Applications (CSPA), pp. 252-257. [2]Chang, L. C., Chang, F. J. and Wang, Y. P. (2009). Auto‐configuring radial basis function networks for chaotic time series and flood forecasting. Hydrological processes, 23(17), pp.2450-2459. [3]Chang, L. C., Shen, H. Y. and Chang, F. J. (2014). Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of hydrology, 519, pp.476-489. [4]Chang, L. C., Shen, H. Y., Wang, Y. F., Huang, J. Y. and Lin, Y. T. (2010). Clustering-based hybrid inundation model for forecasting flood inundation depths. Journal of hydrology, 385(1-4), pp.257-268. [5]Chen, C. S., Chen, B. P. T., Chou, F. N. F. and Yang, C. C. (2010). Development and application of a decision group Back-Propagation Neural Network for flood forecasting. Journal of hydrology, 385(1-4), pp.173-182. [6]Chidthong, Y., Tanaka, H. and Supharatid, S. (2009). Developing a hybrid multi‐model for peak flood forecasting. Hydrological processes, 23(12), pp.1725-1738. [7]Chua, L. H. and Wong, T. S. (2011). Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models. Journal of Hydrology, 397(3-4), pp.191-201. [8]Cristianini, N. and Shaw-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, New York [9]Cunge, J.A.(1980). Two-dimension ,modeling of flood plain. chap.17 of unateady flow in open channel, Water Resources Limited, London [10]Doong, D. J., Lo, W., Vojinovic, Z., Lee, W. L. and Lee, S. P. (2016). Development of a New Generation of Flood Inundation Maps— A Case Study of the Coastal City of Tainan, Taiwan. Water, 521 [11]Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A. X. and Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of The Total Environment, 625, pp.575-588. [12]Hsu, M.H., Chen, S.H. and Chang, T.J. (2002). Dynamic inundation simulation of storm water interaction between sewer system and overland flows. Journal of the Chinese Institute of Engineers, 25(2), pp.171-177 [13]Jardine N. and Sibson R. (1968). The construction of hierarchic and non-hierarchic classifications. Computer Journal, 11, pp. 177-184 [14]Jha, A., Lamond, J., Bloch, R., Bhattacharya, N., Lopez, A., Papachristodoulou, N., Bird, A., Proverbs, D., Davies, J. and Barker, R. (2011). Five Feet High and Rising - Cities and Flooding in the 21st Century. Policy Research Working Paper 5648. Washington: The World Bank [15]Kuntiyawichai, K., Schultz, B., Uhlenbrook, S., Suryadi, F. X. and Van Griensven, A. (2011). Comparison of flood management options for the Yang River Basin, Thailand. Irrigation and drainage, 60(4), pp.526-543. [16]Lai, C., Shao, Q., Chen, X., Wang, Z., Zhou, X., Yang, B. and Zhang, L. (2016). Flood risk zoning using a rule mining based on ant colony algorithm. Journal of hydrology, 542, pp.268-280. [17]Lin, G. F. and Chen, L. H. (2004). A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology, 289(1-4), pp.1-8. [18]Lin, G. F., Chen, G. R., Huang, P. Y. and Chou, Y. C. (2009). Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology, 372(1-4), pp.17-29. [19]Lin, G. F., Lin, H. Y., and Chou, Y. C. (2013). Development of a real-time regional-inundation forecasting model for the inundation warning system. Journal of Hydroinformatics, 15(4), pp.1391-1407. [20]Liu, C. L., Hsaio, W. H. and Chang, T. H. (2018). Locality Sensitive K-means Clustering. Journal of Information Science and Engineering, 34(1), pp.289-305. [21]MacQueen J.B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, pp. 281-297 [22]Nandi, A., Mandal, A., Wilson, M., & Smith, D. (2016). Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environmental Earth Sciences, 75(6), 465. [23]Neshatpour, K., Malik, M., Sasan, A., Rafatirad, S., Mohsenin, T., Ghasemzadeh, H. and Homayoun, H. (2018). Energy-efficient acceleration of MapReduce applications using FPGAs. Journal of Parallel and Distributed Computing, 119, pp.1-17. [24]Pan, T. Y., Lai, J. S., Chang, T. J., Chang, H. K., Chang, K. C. and Tan, Y. C. (2011). Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database. Natural Hazards and Earth System Sciences, 11(3), 771. [25]Popescu, I., Jonoski, A., Van Andel, S. J., Onyari, E. and Moya Quiroga, V. G. (2010). Integrated modelling for flood risk mitigation in Romania: case study of the Timis–Bega river basin. International Journal of River Basin Management, 8(3-4), pp.269-280 [26]Prinsen, G.F. and Becker, B.P.J. (2011). Application of SOBEK hydraulic surface water models in the Netherlands Hydrological Modelling Instrument. Irrigation and Drainage, 60, pp. 35-41 [27]Rigby, E and Van Drie, R. (2008). ANUGA: A New Free and Open Source Hydrodynamic Model. Proceedings of Water Down Under, pp. 629-638. [28]Risi, R.D., Paola, F.D., Turpie, J. and Kroeger, T. (2018). Life Cycle Cost and Return on Investment as complementary decision variables for urban flood risk management in developing countries. International Journal of Disaster Risk Reduction, 28, pp. 88-106. [29]Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, pp. 91-101 [30]Tehrany, M.S., Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), pp.1538-1561. [31]Vapnik, V. (2013). The nature of statistical learning theory. Springer science and business media. [32]Verwey, A., Muttil, N., Liong, S. Y. and He, S. (2008). Implementing an Urban Rainfall-runoff Concept in SOBEK for a Catchment in Singapore. Proceedings of Water Down Under 2008, 36 [33]Zhang T., Ramakrishnan R., and Livny M. (1996). BIRCH: An efficient data clustering method for very large databases. Proceedings of ACM SIGMOD Conference, Montreal, Canada, pp. 103–114. [34]台灣颱風洪水研究中心,「典寶溪及宜蘭河防災測試基地監測及加值應用研究」, 經濟部水利署水利規劃試驗所,2015。 [35]張斐章,張麗秋,2015,類神經網路導論-原理與應用第二版,滄海圖書 [36]許銘熙,鄧慰先,黃成甲,1996,「八掌溪流域洪水及淹水預報模式之研究(二)」,行政院國家科學委員會報告 [37]傅金城, 張駿暉, 葉森海, 黃成甲, 謝龍生, 游保杉, 葉克家和許銘熙,2010, 「淹水災害預警技術」,國研科技(25), pp.15-27. [38]賴進松,張向寬,2001,「防洪示範區淹水境況模擬與決策支援系統之研究(一)-子計畫八:基隆河流域颱洪發生潰堤災害之境況模擬」,行政院國家科學委員會專題研究計畫
|