跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜展
論文名稱:應用低折射率導模共振光柵結構提升水環境中之Nd3+摻雜NaYF4 多層殼核結構奈米粒子之上轉換螢光
論文名稱(外文):Enhancing upconversion luminescence of Nd3+-doped NaYF4 multilayer core-shell nanoparticles in aqueous by low refractive index resonant waveguide grating
指導教授:許佳振
指導教授(外文):Hsu,Chia-Chen
口試委員:許佳振林俊元甘宏志郭文凱
口試委員(外文):Hsu,Chia-ChenLin,Jiunn-YuanKan,Hung-ChihKuo,Wen-Kai
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:上轉換螢光導模共振多層殼核奈米粒子Nd3+摻雜低折射率材料
外文關鍵詞:Up conversionNd3+-dopedCore-shellGuided mode resonanceLow-refractive index
相關次數:
  • 被引用被引用:5
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合兩種方法大幅提升NaYF4上轉換螢光奈米粒子(upconversion nanoparticles, UCNPs)中Tm3+的發光強度,第一種為製作Nd3+摻雜的多層殼核結構上轉換螢光奈米粒子(NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@NaYF4),第二種為將Nd3+摻雜的UCNPs塗佈在水環境中的一維低折射率導模共振光柵(resonant waveguide grating, RWG)。Nd3+摻雜的UCNPs與傳統的Yb3+摻雜相比,其激發波長793 nm有更強的組織穿透力,也能解決局部過熱的問題,在生物的應用上有更多的可行性,此外Nd3+摻雜的多層殼核結構UCNPs由793 nm所激發之上轉換螢光(upconversion luminescence ,UCL)比976 nm激發多出四倍,更重要的是當多層殼核結構UCNPs塗佈在水環境中的一維導模共振光柵(RWG),且入射光相位匹配產生導模共振效應時,可以將波長為450 nm的螢光訊號提升7220倍,因此Nd3+摻雜之UCNPs結合導模共振光柵(RWG)未來在生物醫學應用方面相當有潛力。
關鍵字 : 上轉換螢光、多層殼核奈米粒子、Nd3+摻雜、導模共振、低折射率材料

The present work reports super-intensifying enhancement in the upconversion emission of Tm3+ in NaYF4 host matrix, via a two strategies, (a) fabrication of Nd3+-doped upconversion nanoparticles (UCNPs) with multilayer core-shell structure (NaYF4:Yb,Tm@NaYF4:Yb,Nd@NaYF4) and (b) deposition of Nd3+-doped UCNPs on the surface of low refractive index resonant waveguide grating (RWG) in aqueous environment. Firstly, a highly luminescent 795 nm excited Nd3+-doped upconversion nanoparticles (UCNPs) is synthesized to overcome the overheating effect and significantly improve the penetration depth in tissues, comparing with the conventional Yb3+-doped UCNPs, thus being more feasible for many applications in biology. Furthermore, their upconversion luminescence (UCL) is enhanced about four times under 795nm excitation, as against the traditional 980 nm irradiation. More important, as the Nd3+-doped UCNPs coating on a low refractive index resonant waveguide grating (RWG) in aqueous environment, the up-conversion luminescence signal is greatly enhanced. We achieved an enhancement factor up to 103 fold for the UCL from rare earth-doped nanoparticles, when the RWG was illuminated under a near IR laser (980 or 795nm) with an incident angle matching with the guided mode resonance angle of the RWG. Therefore, the UCNP-doped low refractive index RWG platform can be extended for potential biomedical applications.
Keywords : Up conversion、Nd3+-doped、Core-shell、Guided mode resonance、Low-refractive index。

圖目錄 D
表目錄 G
致謝 H
中文摘要 I
Abstract J
第一章 緒論 1
 1.1上轉換螢光與材料之簡介及應用 1
 1.1.1光子上轉換螢光原理 1
 1.1.2 上轉換螢光材料簡介 2
 1.1.3 Nd3+ ,Yb3+共摻雜上轉換螢光奈米粒子 5
 1.1.4 Nd3+,Yb3+摻雜NaYF4多層殼核結構上轉換螢光奈米粒子 8
 1.1.5 上轉換螢光材料應用 11
 1.2導模共振光柵簡介與應用 13
 1.3低折射率材料簡介與應用 16
 1.4 研究動機與目的 19
第二章 導模共振光柵結構設計 20
 2.1導模共振效應原理 20
 2.2 嚴格耦合波理論(Rigorous Coupled Analysis, RCWA) 22
 2.3導模共振光柵結構模擬設計 22
第三章 實驗 27
 3.1雙光束干涉實驗 27
 3.2 穿透光譜量測實驗 29
 3.3 螢光訊號量測實驗 30
 3.4螢光生命週期量測 32
 3.5螢光偏振性量測 34
第四章 樣品製備 35
 4.1 製作光柵軟模 36
 4.1.1 基板(玻璃)清洗 36
 4.1.2旋轉塗佈光阻劑 36
 4.1.3雙光束干涉微影技術製作一維光柵結構 37
 4.1.4 製作PDMS光柵軟模 38
 4.1.5 製作DR1保護層 39
 4.2 製作低折射率材料導模共振光柵結構 39
 4.2.1 製備低折射率材料溶液 40
 4.2.2 低折射率薄膜製備 41
 4.2.3 PDMS光柵軟模奈米壓印產生光柵結構 41
 4.2.4 濺鍍TiO2波導層 42
 4.3 上轉換螢光奈米粒子製備 42
 4.3.1 製作單核結構(core)上轉換螢光奈米粒子(NaYF4:Yb3+,Tm3+) 43
 4.3.2 製作殼核結構(core-shell)上轉換螢光奈米粒子(NaYF4:Yb3+ ,Tm3+@NaYF4: Yb3+, Nd3+) 44
 4.3.3 製作雙殼結構(double shell)上轉換螢光奈米粒子(NaYF4:Yb3+,Tm3+@ NaYF4: Yb3+, Nd3+@ NaYF4)。 45
 4.4浸塗法(dip-coating)塗佈上轉換螢光奈米粒子 47
 4.5 封裝樣品 47
第五章 實驗結果與討論 48
 5.1上轉換螢光奈米粒子量測 48
 5.1.1上轉換奈米粒子結構量測 48
 5.1.2上轉換奈米粒子螢光量測 50
 5.2導模共振光柵結構與穿透光譜量測 53
 5.3導模共振光柵結構塗佈上轉換螢光奈米粒子之螢光量測 57
 5.3.1 激發共振(excitation resonance)螢光訊號 57
 5.3.2 激發(excitation)與萃取(extraction)同時共振螢光訊號 62
 5.4 激發光強度與上轉換螢光強度關係量測 65
 5.4.1無結構區域 67
 5.4.2激發共振 68
 5.4.3 激發共振和萃取同時共振 69
 5.4.4共振與無結構區域比較 70
 5.4.5螢光訊號增益 71
 5.5螢光生命週期量測 73
 5.5.1 無結構區域 73
 5.5.2 激發共振 74
 5.5.3 激發與萃取同時共振 75
 5.6 螢光偏振性量測 77
 5.6.1 無結構區域 77
 5.6.3激發與萃取同時共振 78
第六章 結論 81
第七章 參考文獻 84


[1] Markus Haase ,Helmut Schafer. Upconverting Nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808 – 5829

[2] Matthew Dacosta , Samer Doughan , Yi Han , Ulrich Krull . Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Analytica Chimica Acta 2014, 832, 1–33

[3] Shengfu Lin, Chihming Wang, Tingjou Ding, Yalun Tsai, Tsunghsun Yang, Wenyih Chen, Jenqyang Chang. Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution. Optics Express 2012, 20(13), 14584–14595.

[4] Feng Wang, Yu Han, Chin Seong Lim, Yunhao Lu, Juan Wang, Jun Xu,Hongy Chen, Chun Zhang,Minghui Hong,Xiaogang Liu. Simultaneous Phase and Size Control of Upconversion Nanocrystals through Lanthanide Doping. Nature 2010, 463, 1061–1065.

[5] Wenjuan Huang, Mingye Ding, Hengming Huang, Chenfei Jiang, Yan Song, Yaru Ni, Chunhua Lu ,Zhongzi Xu. Uniform NaYF4:Yb, Tm hexagonal submicroplates: Controlled synthesis and enhanced UV and blue upconversion luminescence. Materials Research Bulletin 2013,48 300–304

[6] Yefu Wang, Gaoyuan Liu, Lingdong Sun,Jiawen Xiao, Jiacai Zhou, Chunhua Yan. Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect. ACS Nano, 2013, 7 (8), 7200–7206

[7] Weibo Chen, Chengjian Shi, Taojunyu Tao, Meixi Ji, Shuhong Zheng, Xiang-wen Sang,Xiaofeng Liu,Jianrong Qiu. Optical temperature sensing with minimized heating effect using core–shell upconversion nanoparticles. RSC Adv., 2016, 6, 21540

[8] Xiaoji Xie, Nengyue Gao, Renren Deng, Qiang Sun, Qing-Hua Xu, Xiaogang Liu. Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core−Shell Nanoparticles. Am. Chem. Soc. 2013 , 135 , 12608 .


[9] Feng Lu, Lin Yang, Yujie Ding, Junjie Zhu. Highly Emissive Nd3+-Sensitized Multilayered Upconversion Nanoparticles for Efficient 795 nm Operated Photodynamic Therapy. 2016,26(26), 4778–4785.

[10] Tatsuki Hinamoto, Hiroyuki Takashina, Hiroshi Sugimoto, Minoru Fujii. Controlling Surface Plasmon Resonance of Metal Nanocap for Upconversion Enhancement. J. Phys. Chem. C, 2017, 121 (14), 8077–8083

[11] Jiayan Liao, Jinbo Sun, Shenfeng Lai, Bo Shao, Jun Li, Jianbei Qiu, Zhiguo Song,Yong Yang. Preparation and Upconversion Emission Modification of Crystalline ColloidalArrays and Rare Earth Fluoride Microcrystal Composites. Scientific Reports . 2015, 5, 7636.

[12] Jianhung Lin, Haoyu Liou, Chendao Wang, Chunyen Tseng, Chingting Lee, Chuchi Ting, Hungchih Kan, Chiachen Hsu. Giant Enhancement of Upconversion Fluorescence of NaYF4: Yb3+ ,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate. ACS Photonics 2015, 2 (4), 530–536.

[13] Dennis Dobbs , Brian Cunningham. Optically Tunable Guided-Mode Resonance Filter. Applied Optics. 2006, 45 (28), 7286–7293.





[14] Shengfu Lin, Chihming Wang, Tingjou Ding, Yalun Tsai, Tsunghsun Yang, Wenyih Chen, Jenqyang Chang. Sensitive Metal Layer Assisted Guided ModeResonance Biosensor with a Spectrum Inversed Response and Strong Asymmetric Resonance Field Distribution. Optics Express 2012, 20(13), 14584–14595.

[15] Connie Chang-Hasnain,Weijian Yang. High-contrast gratings for integrated optoelectronics. Advances in Optics and Photonics. 2012,4(3),379.

[16] 邱顯文(2016年,7月) ‧應用低折射率導模共振光柵結構提升稀土奈米粒子之上轉換螢光訊號‧碩士論文,嘉義:國立中正大學物理學系研究所。

[17] Xuzhang, Bin Dai, Zhiyuan Xu, Chihhao Parsons. Ordered 3D Thin-Shell NanolatticeMaterials with near-Unity Refractive Indices. Advanced Functional Materials 2015, 25 (42), 6644–6649.

[18] Chuchian Liu, Jhengguang Li ,Shiaowei Kuo. Co-Template Method Provides Hierarchical Mesoporous Silicas with Exceptionally Ultra-Low Refractive Indices. RSC Advances. 2014, 4 (39), 20262–20272.


[19] Fiorenzo Vetrone, John-Christopher Boyer, John Capobianco. Significance of Yb 3+ concentration on the upconversion mechanisms in codoped Y 2O 3 : Er 3+ , Yb 3+ nanocrystals. J. Appl. Phys. 2004,96, 661.

[20] Robbasa(2016,7月) Enhanced upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with the low refractive index resonant waveguide grating structure using streptavidin-biotin affinity binding as an example‧碩士論文,嘉義:國立中正大學物理學系研究所。

[21] Stéphane Collin. Nanostructure arrays in free-space: optical properties and applications. Reports on Progress in Physics.2014,77(12), 126402.

[22] Jianhung Lin, Chunyen Tseng, Chingting Lee,Hungchih Kan,Chia chen Hsu1. Guided-mode resonance enhanced excitation andextraction of two-photon photoluminescence in aresonant waveguide grating. Opt Express. 2013 Oct 7,21(20),24318-25.

[23] Yeteng Zhong , Gan Tian , Zhanjun Gu , Yijun Yang , Lin Gu , Yuliang Zhao ,Ying Ma ,Jiannian Yao. Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd 3+ Sensitized Nanoparticles. Adv. Mater. 2014, 26, 2831–2837.

[24] Emilia Palo, MinneaTuomisto, IkoHyppänen , Hendrik Swart , Jorma Hölsä , Tero Soukka , Mika Lastusaari. Highly uniform up-converting nanoparticles: Why you should control your synthesis even more. Luminescence2017,185125–131

[25] Guanying Chen,Tymish Ohulchanskyy,Wingcheung Law,Hans Agrenb , Paras Prasad. Monodisperse NaYbF4 : Tm3+/NaGdF4 core/shell nanocrystals with nearinfrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale, 2011, 3, 2003–2008


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top