|
張莉雪, 陳伯傳, 周士傑, & 陳乃宇. (2014). 福衛二號排程與災防雲端應用服務. 航測及遙測學刊, 18(1), 13-27. 顏伸運, & 陳靜盈. (2015). 衛星影像巨量資料儲存與應用平台建置. 航測及遙測學刊, 19(4), 303-312. 蔡博閎, & 林昭宏. (2016). 衛星影像雲遮蔽區域之移除與填補演算法. Journal of Photogrammetry and Remote Sensing, 20(3), 217-229. Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612. Cheng, Q., Liu, H., Shen, H., Wu, P., & Zhang, L. (2017). A spatial and temporal nonlocal filter-based data fusion method. IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4476-4488. Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. Eigen, D., Krishnan, D., & Fergus, R. (2013). Restoring an image taken through a window covered with dirt or rain. In Proceedings of the IEEE International Conference on Computer Vision (pp. 633-640). El Hajj, M., Bégué, A., Lafrance, B., Hagolle, O., Dedieu, G., & Rumeau, M. (2008). Relative radiometric normalization and atmospheric correction of a SPOT 5 time series. Sensors, 8(4), 2774-2791. Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-2218. Gevaert, C. M., & García-Haro, F. J. (2015). A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote sensing of Environment, 156, 34-44. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). Guo, M., Zhang, H., Li, J., Zhang, L., & Shen, H. (2014). An online coupled dictionary learning approach for remote sensing image fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1284-1294. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). He, W., & Yokoya, N. (2018). Multi-Temporal Sentinel-1 and-2 Data Fusion for Optical Image Simulation. ISPRS International Journal of Geo-Information, 7(10), 389. Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., & White, J. C. (2009). A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8), 1613-1627. Hore, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. In 20th IEEE International Conference on Pattern Recognition (pp. 2366-2369). Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141). Huang, B., & Song, H. (2012). Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3707-3716. Huang, B., Zhang, H., Song, H., Wang, J., & Song, C. (2013). Unified fusion of remote-sensing imagery: Generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations. Remote sensing letters, 4(6), 561-569. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. Jönsson, P., & Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8), 833-845. Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1646-1654). Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551. Lewis, A., Lymburner, L., Purss, M. B., Brooke, B., Evans, B., Ip, A., ... & Oliver, S. (2016). Rapid, high-resolution detection of environmental change over continental scales from satellite data–the Earth Observation Data Cube. International Journal of Digital Earth, 9(1), 106-111. Li, X., Ling, F., Foody, G. M., Ge, Y., Zhang, Y., & Du, Y. (2017). Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293-311. Li, H., Wu, X. J., & Kittler, J. (2018). Infrared and Visible Image Fusion using a Deep Learning Framework. In 24th IEEE International Conference on Pattern Recognition (ICPR) (pp. 2705-2710). Liu, H., Shen, H., Wu, P., & Zhang, L. (2017). A spatial and temporal nonlocal filter-based data fusion method. IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4476-4488. Lymburner, L., Botha, E., Hestir, E., Anstee, J., Sagar, S., Dekker, A., & Malthus, T. (2016). Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sensing of Environment, 185, 108-118. McInerney, D., & Kempeneers, P. (2015). Orfeo toolbox. In Open Source Geospatial Tools. Springer, Cham. (pp. 199-217) Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695-4708. Mittal, A., Soundararajan, R., & Bovik, A. C. (2012). Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 20(3), 209-212. Moosavi, V., Talebi, A., Mokhtari, M. H., Shamsi, S. R. F., & Niazi, Y. (2015). A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature. Remote Sensing of Environment, 169, 243-254. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814). Randrianjatovo, R. N., Rakotondraompiana, S., & Rakotoniaina, S. (2014). Estimation of Land Surface Temperature over Reunion Island using the thermal infrared channels of Landsat-8. In 2014 IEEE Canada International Humanitarian Technology Conference-(IHTC) (pp. 1-4). Rembold, F., Meroni, M., Urbano, F., Royer, A., Atzberger, C., Lemoine, G., & Haesen, D. (2015). Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples. Frontiers in Environmental Science, 3, 46. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99). Rodrigues, A., Marcal, A. R., & Cunha, M. (2011). PhenoSat—A tool for vegetation temporal analysis from satellite image data. In IEEE 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (pp. 45-48). Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005). A crop phenology detection method using time-series MODIS data. Remote sensing of environment, 96(3-4), 366-374. Schowengerdt, R. A. (1980). Reconstruction of multispatial, multispectral image data using spatial frequency content. Photogrammetric Engineering and Remote Sensing, 46(10), 1325-1334. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423. Shen, H., Wu, P., Liu, Y., Ai, T., Wang, Y., & Liu, X. (2013). A spatial and temporal reflectance fusion model considering sensor observation differences. International journal of remote sensing, 34(12), 4367-4383. Son, N. T., Chen, C. F., Chen, C. R., Sobue, S. I., Chiang, S. H., Maung, T. H., & Chang, L. Y. (2017). Delineating and predicting changes in rice cropping systems using multi-temporal MODIS data in Myanmar. Journal of Spatial Science, 62(2), 235-259. Song, H., Liu, Q., Wang, G., Hang, R., & Huang, B. (2018). Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 821-829. Song, H., & Huang, B. (2012). Spatiotemporal satellite image fusion through one-pair image learning. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 1883-1896. Stone, H. S., Orchard, M. T., Chang, E. C., & Martucci, S. A. (2001). A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Transactions on geoscience and remote sensing, 39(10), 2235-2243. Storey, J., Roy, D. P., Masek, J., Gascon, F., Dwyer, J., & Choate, M. (2016). A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery. Remote Sensing of Environment, 186, 121-122. Sugumaran, R., Hegeman, J. W., Sardeshmukh, V. B., & Armstrong, M. P. (2015). Processing remote-sensing data in cloud computing environments. In Remotely Sensed Data Characterization, Classification, and Accuracies (pp. 587-596). CRC Press. Svoboda, P., Hradis, M., Barina, D., & Zemcik, P. (2016). Compression artifacts removal using convolutional neural networks. arXiv preprint arXiv:1605.00366. Teo, T. A., Shih, T. Y., & Chen, B. (2017). Automatic Georeferencing Framework for Time Series Formosat-2 Satellite Imagery using Open Source Software. In Proceedings of the 38th Asian Conference on Remote Sensing. Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal changes in satellite image time series. Remote sensing of Environment, 114(1), 106-115. Wagner, W. (2015). Big data infrastructures for processing sentinel data. In Photogrammetric week.15, 93-104. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612. Wang, Q., Zhang, Y., Onojeghuo, A. O., Zhu, X., & Atkinson, P. M. (2017). Enhancing spatio-temporal fusion of MODIS and Landsat data by incorporating 250 m MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 4116-4123. Xue, J., Leung, Y., & Fung, T. (2017). A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sensing, 9(12), 1310. Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F., ... & Wood, E. F. (2018). Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience, 11(8), 556. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142-3155. Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J. G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610-2623. Zhu, X., Cai, F., Tian, J., & Williams, T. (2018). Spatiotemporal fusion of multisource remote sensing data: literature survey, taxonomy, principles, applications, and future directions. Remote Sensing, 10(4), 527. Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., & Lefsky, M. A. (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165-177. Zhukov, B., Oertel, D., Lanzl, F., & Reinhackel, G. (1999). Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1212-1226.
|