跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王志豪
研究生(外文):Wang, Jhih-Hao
論文名稱:探討砷化銦鋁/砷化銦/砷化銦鎵系統之磷化銦高電子遷移率電晶體之模擬研究
論文名稱(外文):The Study of Simulation InAlAs/InAs/InGaAs System for InP High Electron Mobility Transistor
指導教授:張 翼馬哲申
指導教授(外文):Chang, YiMaa, Jer-Shen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:85
中文關鍵詞:高電子遷移率電晶體假型高電子遷移率電晶體砷化銦鎵
外文關鍵詞:HEMTpHEMTInGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文是使用Silvaco公司的模擬軟體來探討InAlAs/InGaAs/InP假型高電子遷移率電晶體在高頻的特性。此主要研究目的在於分析每層元件厚度的效應並且去優化此元件結構使之有最佳化。元件材料中顯示有最佳化的直流特性和射頻特性是相當重要的,像是汲極電流、轉導和電流截止頻率都從這些模擬結果中被萃取出來。
然而,模擬元件的真正意義在於首先必須要知道元件中的特性,才能找出適合的模型來模擬元件,再者對模型參數做校準使模擬值趨近於實際值。這對未來開發InAlAs/InGaAs/InP系統的元件有相當大的幫助和貢獻。

In my research thesis, to study high frequency of characteristics InAlAs / InGaAs/InP pHEMT have been simulated by using Silvaco software. The main objective of research is to study the effects of variations of supply layer thicknesses and then it has optimization to change the device structure. The important of DC and RF parameters such as drain current, transconductance and current gain cut off frequency are extracted from these simulation results which that device material exhibits optimized performance.
However, the simulation device of true meaning is necessary to understand the device characteristics and then can find suitable models to simulate device, furthermore, to make calibration of the model parameters could match simulated results with the measured results. It is important to develop the InAlAs / InGaAs /InP systems device with considerable assistance and contribution in the future.

Abstract(Chinese)……………………………………………………………i
Abstract(English)…………………………………………………………ii
Acknowledgement……………………………………………………………iii
Contents………………………………………………………………………iv
List of Tables………………………………………………………………vi
List of Figures……………………………………………………………vii
Chapter 1 Introduction……………………………………………………1
1-1 General Background……………………………………………………1
1-2 Motivation………………………………………………………………2
1-3 Thesis Content…………………………………………………………3
Chapter 2 Literature Review……………………………………………6
2-1 Introduction of Ⅲ-V Semiconductor……………………………6
2-2 Introduction of InxGa1-xAs/InAs/InxGa1-xAs Composite Channel in High Electron Mobility Transistors…………………7
2-3 In0.52Al0.48As/In0.53Ga0.47As/InP pHEMT Structure………9
2-4 In0.53Ga0.47As/InAs/In0.53Ga0.47As pHEMT Structure……10
2-5 In0.7Ga0.3As/InAs/In0.7Ga0.3As Composite Channel High Electron Mobility Transistors………………………………………12
Chapter 3 Simulation Software and Physical Models…………25
3-1Metal and Semiconductor Junction and Gate Recess………25
3-2Low Field Mobility of Electrons………………………………27
3-3Low/High-Field Transport in Pseudomorphic InxGa1-xAs / In0.52Al0.48As Heterostructure……………………………………28
3-4Poole-Frenkel Effect…………………………………………………29
3-5Simulation Foundation and Physical Models…………………31
Chapter 4 Simulation Results and Discussion of InAlAs/ InAs/ InGaAs pHEMT………………………………………………………47
4-1InAlAs/InAs/InGaAs pHEMT epitaxial structure……………47
4-2DC Characteristics of InAlAs/InAs/InGaAs pHEMT…………47
4-3RF Characteristics of InAlAs/InAs/InGaAs pHEMT…………49
4-4Variation of schottky barrier layer thickness…………49
4-5Variation of δ-doping concentration…………………………50
4-6Variation of spacer layer thickness…………………………50
4-7Variation of channel layer thickness………………………51
4-8Optimum DC characteristics of device………………………51
4-9Optimum RF characteristics of device………………………52
Chapter 5 Conclusion…………………………………………………77
References…………………………………………………………………79

[1]G. M. Metze, J. F. Bass, T. T. Lee, A. B. Cornfeld, J. L. Singer, H. L. Hung, H. C. Huang, and K. P. Pande, “High gain , V band ,low noise MMIC amplifiersusing pseudomorphic MODFETs,” IEEE Electron Device Lett., vol.11, pp.24, 1990.
[2]C.S. Wu, C. K. Pao, W. Yau, H. Kanber, M. Hu, S.X. Bar, A. Kurdoghlian, A. Bardai, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomorphic HEMT manufacturing technology for multi- functional Ka band MMIC applications,” IEEE Microwave Theory and Tech., vol.43, pp.257,1995.
[3]S. E. Rosenbaum, B. K. Kornanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompson, L. P. B. Katehi, and G. M. Rebeiz, “155-and 213GHz InAlAs/InGaAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol.43, pp.927,1995.
[4]T. Yokoyama, T. Kunihisa, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa, “Low current dissipation pseudomorphic MODFET MMIC power amplifier for PHS operating with a 3.5V single voltage supply,” IEEE GaAs IC Symp., pp.107, 1996.
[5]T. Tanaka, H. Furukawa, H. Takenaka, T. Ueda, T .Fukui, and D. Ueda, “Low voltage operation GaAs spike gate power FET with high power added efficiency,” IEEE Trans. Electron Devices, vol.44, pp.354, 1997.
[6]K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microwave Theory and Tech., vol.48, pp.1313, 2000.
[7]D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/InGaAs metal insulator doped channel FET for broad-band, large signal application,” IEEE Electron Device Lett., vol.12, pp.436,1991.
[8]W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFETs grown by MOCVD,” IEEE Trans. Electron Device, vol.41, pp.456, 1994.
[9]C.Z.Wu,L.W.Laih,andW.C.Liu, “study of InGaAs/GaAs metal insulator semiconductor-like heterostructure field effect transistor,” Solid State Electron., vol.39, pp.791, 1996.
[10]L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50nm self-aligned gate pseudomorphic InAlAs/InGaAs high electron mobility transistors,” IEEE Trans. Electron Device, vol.39, pp.2007, 1992.
[11]J. A. del Alamo and D. H. Kim, “The Prospects for 10 nm III-V CMOS,” International Symposium on VLSI Technology Systems and Applications, pp. 166-167, April 2010.
[12]B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid State Electron., vol.49, no. 12, pp. 1875-1895, Dec. 2005.
[13]E. Y. Chang, C. I. Kuo, H. T. Hsu, and C. Y. Chang, “InAs thin Channel High Electron Mobility Transistors for High Speed Applications,” IEEE European Microwave Integrated Circuit Conference, pp. 198-201, Oct. 2008.
[14]T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, “Improved InAlAs / InGaAs HEMT characteristics by inserting an InAs layer into the InGaAs channel,” IEEE Electron Device Lett., vol. 13, no. 6, pp. 325-327, Jun.1992.
[15]K. Shinohara, Y. Yamashita, A. Endoh, K. Hikosaka, T. Matsui,
T. Mimura, and S. Hiyamizu, “Extremely high-speed lattice-matched
InGaAs/InAlAs high electron mobility transistors with 472 GHz cutoff frequency,” Jpn. J. Appl. Phys., vol. 41, no. 4B, pp. L437–L439, Apr. 2002.
[16]Y. Yamashita, A. Endoh, K. Shinohra, K. Hikosaka, T. Matsui,
S. Hiyamizu, and T. Mimura, “Pseudomorphic In0.52Al0.48As /
In0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz,” IEEE Electron Device Lett., vol. 23, no. 10, pp. 573–575, Oct. 2002.
[17]D. H. Kim, J. A. Alamo, J. H. Lee, and K. S. Seo, IEEE Transactions on Electron Devices, 54, 2606 (2007).
[18]C. Y. Chang, H. T. Hsu, E. D. Chang, C. I. Kuo, Y. Miyamoto, S. Datta, M. Radosavljevic, and G. W. Huang, IEEE Electron Device Letters, 28, 856 (2007).
[19]R. Chau, B. Doyle, S. Datta, J. Kavalieros and K. Zhang, Nature Materials, 6, 810 (2007)
[20]C. I. Kuo, H. T. Hsu, E. D. Chang, C. Y. Chang, Y. Miyamoto, S. Datta, M. Radosavljevic, G. W. Huang, and C. T. Lee, IEEE Electron Device Letters, 29, 290 (2008).
[21]D. H. Kim and J. A. del Alamo, IEEE Electron Device Letters, 29, 830 (2008).
[22]L.D. Nguyen, L. E. Larson, and U. K. Mishra. “Ultra-high speed
modulation - doped field-effect transistors: a tutorial review.” Proceedings of the IEEE, 80(4):494– 518,Apr. 1992.
[23]S. M. Sze and K. K. Ng. Physics of Semiconductor Devices, 3rd ed. New York: John Wiley &; Sons, pp.57, 2004.
[24]S. M. Sze and K. K. Ng. Physics of Semiconductor Devices, 3rd ed. New York: John Wiley &; Sons, 2004.
[25]U. P. Gomes, Y. Chen, S. Kabi, P. Chow, and D. Biswas, “Quantum well engineering of InAlAs/InGaAs HEMTs for low impact ionization applications,” Current Applied Physics, 13, pp.487-492, 2013.
[26]F. Fatah, C. I. Kuo, C.Y. Chiang, and C.Y. Hsu et al., “Bias Dependent Radio Frequency Performance for 40nm InAs High Electron-Mobility Transistor with a Cutoff Frequency Higher than 600GHz,” Japanese Journal of Applied Physics 51 (2012) 110203.
[27]E. Y. Chang, C. I. Kuo, H. T. Hsu, and C. Y. Chang, “InAs thin Channel High Electron Mobility Transistors for High Speed Applications,” IEEE European Microwave Integrated Circuit Conference, pp. 198-201, Oct. 2008.
[28]D. H. Kim, and J.A. Alamo, “30 nm E-mode InAs PHEMTs for THz and Future Logic Applications,” IEEE EDL, pp.830, 2008.
[29]C. I. Kuo, H. T. Hsu, C. Y. Chang, E. Y. Chang, and H. S. Hsu. “Evaluation of RF and Logic Performance for 80 nm InAs/InGaAs Composite Channel HEMTs Using Gate Sinking Technology,” IEEE. 2007
[30]Tetsuya Suemitsu, Takatomo Enoki, Nobuyuki Sano, Masaaki Tomizawa, and Yasunobu Ishii, “An analysis of the Kink Phenomena in InAlAs/InGaAs HEMT’s using Two-Dimensional device simulation,” IEEE Transactions On Electron Devices, vol. 45, no. 12, Dec. 1998.
[31]K. Shinohara et. al., IPRM 2007, pp. 18-21 (2007)
[32]K. J. Chen, T. Enoki, K. Arai, and M. yamamoto, "High-performance InP-based enhancement-mode HEMT's using Non-Alloyed Ohmic Contacts and Pt-based Buried–Gate Technology,” IEEE Trans. Electron Devices, vol. 43, no. 2, pp. 252-257, Feb. 1996.
[33]L. H. Chu, E. Y. Chang, L. Chang, Y. H. Wu, S. H. Chen, H. T. Hsu, T. L. Lee, Y. C. Lien, and C. Y. Chang, "Effect of Gate Sinking on the Device Performance of the InGaP/AlGaAs/InGaAs Enhancement Mode PHEMT," IEEE Electron Device Lett., vol. 28, pp. 82-85, Feb. 2007.
[34]N. Harada, S. Kuroda, T. Katakami, K. Hikosaka, T. Mimura, and M. Abe, “Pt-based gate enhancement-mode InAlAs/InGaAs HEMTs for large-scale integration,” in Proc. 3rd Int. Conf. InP and Related Materials, 1991, pp.377-380.
[35]K. Shinohra, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, “547GHz, In0.7Ga0.3As / In0. 52A10.48As HEMTs With Reduced Source and Drain Resistance,” IEEE Electron Device Lett., vol. 25, pp. 241-243, May 2004.
[36]H. Matsuzaki, T. maruyama, T. Kosugi, H. Takahashi, M. Tokumitsu, and T. Enoki, "Laterally Scaled Down Tiered-Edge Ohmic Structure of InP-Based HEMTs for 2S/mm gm and 500 GHz fT," in IEDM Tech. Dig., 2005, pp.775-778.
[37]T. Akazaki et.al., IEEE EDL, pp. 325-327 (1992)
[38]C. I. Kuo, H.T. Hsu, E. Y. Chang, C. Y. Chang, Y. Miyamoto, Suman Datta, M. Radosavljevic, G.W. Huang, and C. T. Lee, “In0.7Ga0.3As / InAs / In0.7Ga0.3As Composite Channel HEMT Using Gate Sinking,” IEEE ELECTRON DEVICE LETTERS, vol.29, no.4, april 2008.
[39]S. M. Sze, K. N. Kwork, “ Physics of Semiconductor Devices,” John Wiley and Sons, Inc., 2007
[40]Ibid, ch.9, by Yoshikazu Takeda
[41]J. D. Oliver, L. F. Eastman, J. Electron. Master, vol.9, no.4 pp.693-712, 1980
[42]K. T. Chan, L. D. Zhu, J. M. Ballantyne, Appl Phys Lett, vol.47, no.1 pp.44-6, 1985
[43]M. Razeghi, The MOCVD Challenge Adam Hilger, pp.79, 1989
[44]T. Mishima, M. Takahama, Y. Uchida, T. Tanoue, S. Takahashi, J. Electron. Mater, vol.20, no.1, pp113-6,1991.
[45]W. P. Hong, G. I. Ng, P. K. Bhattacharya, D. Pavlidis, S. Willing, B. Das, J. Appl. Phys. vol.64, pp.1945, 1988.
[46]W. P. Hong, P. K. Bhattacharya, IEEE Trans. Electron Device, vol.34, pp.1491, 1987.
[47]J. Frenkel, Tech. Phys. USSR 5, 685 (1938); Phys. Rev. $4, 647', (1938).
[48]C. A. Mead, Phys. Rev. 128, 2088 (1962).
[49]H. Hirose and Y. Wada, J. Appl. Phys. 3, 179 (1964).
[50]I. T. Johansen, J. Appl. Phys. 37, 499 (1966).
[51]T. E. Hartman, J. C. Blair, and R, Bauer, J. Appl. Phys. 37, 2468 (1966).
[52]“ ATLAS User MANUAL DEVICE SIMULATION SOFTWARE”, Silvaco, Inc. 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊