跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡守閔
研究生(外文):TSAI, SHOU-MIN
論文名稱:鈦酸鈉(Na2Ti3O7)鈉電池負極材料於鈉電池之應用
論文名稱(外文):The effect of sodium titanate as the anode material forsodium ion batteries and their applications
指導教授:莊陽德莊陽德引用關係
指導教授(外文):Juang, Yung-Der
口試委員:林建宏胡龍豪
口試委員(外文):Lin, Jarrn-HorngHu, Lung-Hao
口試日期:2016-08-29
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:51
中文關鍵詞:鈉離子電池負極材料鈦酸鈉
外文關鍵詞:sodium-ion batteriesanode materialsodium titanate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:694
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
鈦酸鈉作為負極材料,具有二氧化鈦層與鈉離子層堆疊之層狀結構,之間有供應鈉離子進行嵌入嵌出的鈉離子通道,與現今最常使用來做為負極的硬碳層狀結構相似,且工作電壓低,可以做為理想的鈉電池負極材料。在本研究中的鈦酸鈉(Na₂Ti₃O₇)是以固態反應法合成,並比較摻雜不同莫耳比例的鋰之後,其結構、形貌以及充放電特性上之表現差異。鈦酸鈉以850度下持溫時間5、8、11於大氣氣氛下進行燒結,燒結後顆粒粒徑在2~10微米,呈短棒狀形貌,而摻雜鋰之後可發現整體顆粒較為緻密,提高摻雜鋰比例之後則有熔融狀顆粒出現。以具有層狀結構的單斜晶系鈦酸鈉(Na₂Ti₃O₇)作為鈉離子電池的負極材料,並摻雜鋰以研究鈦酸鈉在電性上之表現差異。實驗中組成之半電池在電壓區間0.01~3V之間進行充放電測試,各樣本首圈放電容量平均約在70 mAh/g (4mA/g, 0.1C),不可逆率40%,3圈及10圈後電容量損失率約為60%。
The sodium titanate (Na₂Ti₃O₇) as the anode material with the layered structure constructing by titanium dioxide layer and sodium ion layer. And also a pathway between these layer structures providing the sodium ion intercalation, yet its low working voltage. These supposing the sodium titanate as an alternative choice for the anode material of sodium-ion batteries in the future. The sodium titanate (Na₂Ti₃O₇) anode material in this research synthesis by conventional solid state reaction under 850 degree Celsius with different condition. The crystal structure and surface morphology of sodium titanate (Na₂Ti₃O₇) were monoclinic with a rod like shape, particle size between 2 ~10 micron. The overall particle density of sodium titanate increase with the molar ratio of lithium increase in the sodium titanate. Finally the sodium half-cell CR 2032 present a first discharge capacity70 mAh/g (4mA/g, 0.1C) with about 40% capacity lost. After third and 10th cycle, capacity drop to about 40% compare to the first cycle. The charge-discharge curve has been test under 0.01~3V.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1前言 1
1-2 研究背景及文獻回顧 2
1-3 研究動機與目的 4
第二章 基礎理論與文獻回顧 5
2-1 儲能技術之發展 5
2-2鹼金屬離子電池 5
2-3 鈉電池負極材料發展 7
2-3-1鈦基化合物電極材料 8
2-3-2鈦酸鈉負極材料 13
2-4鈦酸鈉負極材料製備 21
2-4-1 固態反應法 21
2-4-2 沉澱法 22
2-4-3 水熱法 22
2-4-4 溶膠凝膠法 22
2-4-5 噴霧法 22
第三章 實驗製程及量測 23
3-1 實驗架構 23
3-1-1鈦酸鈉層狀負極材料製備 23
3-1-2半電池組成 23
3-2 實驗藥品 24
3-2-1 鈦酸鈉負極材料製備 24
3-2-2 極片製備暨半電池組裝 24
3-3 實驗設備 25
3-3-1 滾軸式球磨機 (MUBM-340-RTD) 25
3-3-2 高溫燒結爐 (DENG YNG, DF40) 25
3-3-3 行星式球磨機 (Gold Max, G-Mixer 400S) 26
3-3-4 極片塗佈機 (浩聚實業有限公司,LE-CT75) 26
3-3-5 極片滾壓機 (T·VERTER, N2-2P5-H) 27
3-3-6 厭氧操作箱 (MBRAUN, Unilab-B) 27
3-3-7電化學測試平台(佳優科技股份有限公司,BAT-750B) 28
3-4 實驗流程 29
3-5 鈦酸鈉粉末製備暨結構測定 30
3-5-1 鈦酸鈉負極材料製備 30
3-5-2 X射線繞射分析儀 (X-Ray diffraction, XRD) 31
3-5-3 掃描式電子顯微鏡 ( Scanning electron microscopy, SEM ) 32
3-5-4 拉曼光譜分析儀(Raman scattering spectrometer) 33
3-6 半電池組裝暨電化學測試 34
3-6-1 鈦酸鈉負極材料極片製備暨電池組裝 34
第四章 結果與討論 36
4-1 X光繞射圖譜分析 36
4-1-2 摻雜鋰之鈦酸鈉繞射圖譜分析 37
4-2 掃描式電子顯微鏡形貌分析 39
4-3 拉曼光譜分析 42
4-4 充放電測試-CR 2032 鈕扣型半電池 43
第五章 結論 48

[1]N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chem Rev, vol. 114, pp. 11636-11682, 2014.
[2]L. P. Wang, L. Yu, X. Wang, M. Srinivasan, and Z. J. Xu, "Recent developments in electrode materials for sodium-ion batteries," J. Mater. Chem. A, vol. 3, pp. 9353-9378, 2015.
[3]H. Pan, Y.-S. Hu, and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage," Energy & Environmental Science, vol. 6, 2338, 2013.
[4]S. KUZE, J.-i. KAGEURA, S. MATSUMOTO, T. NAKAYAMA, M. MAKIDERA, M. SAKA, et al., "Development of a Sodium Ion Secondary Battery," SUMITOMO KAGAKU, 2013.
[5] J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 939-943, 2010.
[6] Z. Lu, D. D. MacNeil, and J. R. Dahn, "Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 )  ]  O 2 for Lithium-Ion Batteries," Electrochemical and Solid-State Letters, vol. 4, pp. A191-A194, 2001.
[7] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "LixCoO2 (0[8] K. M. Shaju, G. V. Subba Rao, and B. V. R. Chowdari, "Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries," Electrochimica Acta, vol. 48, pp. 145-147, 2002.
[9 ] C. de las Casas and W. Li, "A review of application of carbon nanotubes for lithium ion battery anode material," Journal of Power Sources, vol. 208, pp. 74-85, 2012.
[10] L. Chen, Z. Wang, C. He, N. Zhao, C. Shi, E. Liu, et al., "Porous Graphitic Carbon Nanosheets as a High-Rate Anode Material for Lithium-Ion Batteries," ACS Applied Materials & Interfaces, vol. 5, pp. 9537-9545, 2013.
[11] A. D. Roberts, X. Li, and H. Zhang, "Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials," Chemical Society Reviews, vol. 43, pp. 4341-4356, 2014.
[12] J. Ji, H. Ji, L. L. Zhang, X. Zhao, X. Bai, X. Fan, et al., "Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries," Advanced Materials, vol. 25, pp. 4673-4677, 2013.
[13] J.-Y. Lin, C.-C. Hsu, H.-P. Ho, and S.-h. Wu, "Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries," Electrochimica Acta, vol. 87, pp. 126-132, 2013.
[14] Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, et al., "Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery," Journal of the American Chemical Society, vol. 134, pp. 7874-7879, 2012.
[15] S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, and L. Qi, "Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life," Energy & Environmental Science, vol. 7, pp. 1924-1930, 2014.
[16 ] Y. Yan, Y.-X. Yin, Y.-G. Guo, and L.-J. Wan, "A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as a High-Performance Anode Material for Sodium-Ion Batteries," Advanced Energy Materials, vol. 4, pp. 1301584(1~5), 2014.
[17] Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, and Y. Huang, "Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance," Carbon, vol. 55, pp. 328-334, 2013..
[18]P. J. P. Naeyaert, M. Avdeev, N. Sharma, H. B. Yahia, and C. D. Ling, "Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material," Chemistry of Materials, vol. 26, pp. 7067-7072, 2014.
[19]M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, and S. Komaba, "Negative electrodes for Na-ion batteries," Phys Chem Chem Phys, vol. 16, pp. 15007-150028, 2014.
[20]A. Rudola, K. Saravanan, C. W. Mason, and P. Balaya, "Na2Ti3O7: an intercalation based anode for sodium-ion battery applications," Journal of Materials Chemistry A, vol. 1, pp. 2653-2662, 2013.
[21]C. Delmas, F. Cherkaoui, A. N. , and P. Hagenmuller, "A NASICON-TYPE phase as intercalation electrode : NaTi2(PO4) 3," Mat Res Bull, vol. 22, pp. 634-638 , 1987.
[22]C. Delmas, and J. L. soubeyroux "The NASICON-type titanium phosephates ATi2 (PO4)3 ~ (A=Li, Na}as electrode materials," Solid state lonics, vol. 28-30, pp. 419-423, 1988.
[23]P. Senguttuvan, G. Rousse, H. Vezin, J. M. Tarascon, and M. R. Palacín, "Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries," Chemistry of Materials, vol. 25, pp. 2391-2393, 2013.
[24]S. Lunell, A. Stashans, L. Ojama, A. Hagfeldt, H. Lindstro, and A. Hagfeldt, "Li and Na Diffusion in TiO2 from Quantum Chemical Theory versus Electrochemical Experiment," vol. 119, pp. 7374-7380, 1997.
[25]Y. Xu, E. M. Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, et al., "Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries," Chem Commun , vol. 49, pp. 8973-8975, 2013.
[26]P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, and M. R. Palacín, "Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries," Chemistry of Materials, vol. 23, pp. 4109-4111, 2011.
[27]S. Ghosh, Y. Kee, S. Okada, and P. Barpanda, "Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries," Journal of Power Sources, vol. 296, pp. 276-281, 2015.
[28]M. Shirpour, J. Cabana, and M. Doeff, "New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems," Energy & Environmental Science, vol. 6, pp. 2538, 2013.
[29] 汪建民主編,粉末冶金技術手冊,新竹縣竹東鎮:中華 民國粉末冶金 協會,1999。
[30] 王世敏、許祖勛、傅晶,奈米材料原理與製備,五南文化事業 ,第88~93頁
[31] 馮端 主編, 固體物理學大辭典,建宏出版社,第859頁
[32] 斯壯,聚合物-無機奈米複合材料,五南圖書出版,第686頁
[33] 高濂,珊·郑,张青红,奈米光觸媒,五南圖書出版,第136頁
[34] 林麗娟,X光繞射原理及其應用,工業材料86期,第100~109頁
[35] 羅聖全,科學研習月刊,第52卷
[36] 黃宏彥,雷射原理與量測概論,65頁

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top