跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳維翰
研究生(外文):CHIN, WEI-HAN
論文名稱:以電漿熔射披覆漸進多孔鉭於鈦合金植入材之機械性質與生醫性質之研究
論文名稱(外文):Study the Effects of Mechanical and Biomedical Properties of Progressive Porous Tantalum Coatings on Titanium Alloy Implant by Vacuum Plasma Spraying
指導教授:郭聰源
指導教授(外文):KUO, TSUNG-YUAN
口試委員:李澤民洪廷甫
口試委員(外文):LEE, TZER-MINHONG, TING-FU
口試日期:2017-07-25
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:真空電漿熔射鈦合金鹼熱處理生物活性生物相容性
外文關鍵詞:Vacuum plasma spray(VPS)TantalumTitanium alloyAlkali- and Heat-treatmentBioactivityBiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
本研究以披覆過程氧化物極少、結晶性穩定且結合力優異的真空電漿熔射法(VPS)作為披覆製程,選用Ti-6Al-4V為基材,Ta 粉為披覆材,進行三層式熔射,內、中、外層分別使用細、中、粗級顆粒直徑之Ta粉來控制熔融率,以使形成由內至外孔隙率漸增之塗層,基材並進行650 °C之預熱,以提升界面熔合效果。熔射完成後之Ta塗層試件,分別進行機械性質測試以及生醫性質試驗。
研究結果顯示,Ta塗層與Ti-6Al-4V基材之界面可獲得良好結合。此三層式塗層表面之平均孔隙率約13 %、平均粗糙度約Ra:22.2 µm;而塗層截面 (約380 µm厚)之平均孔隙率,由內層之0.6 %漸增至外層的7.6 %,所對應的硬度與彈性模數 (E)則分別由240 HV0.1降至167 HV0.1與148.3 GPa 降至123.1GPa,這將有助於降低塗層之應力遮蔽效應,減少塗層脫落的風險。此外,塗層與基材之結合強度平均可達54.5±2 MPa,其破壞模式均在塗層表面與拉伸棒材之膠合處。在生醫性質上,塗層經鹼處理(1M NaOH)及熱處理(300 °C)後,浸泡人工模擬體液(SBF)至3天時,塗層表面就已幾乎長滿磷灰石,並隨著浸泡時間的增長而增大,其生物活性明顯高於未經鹼熱處理之試件;然而,試片在進行MG-63細胞培植時,不論有無經鹼熱處理試件,在培植至3小時,細胞均已開始往四周蔓延擴展,且隨培植時間越長,蔓延擴展面積越大,二組試件均呈現優異的生物相容性。整體研究結果顯示,以電漿熔射法將Ta披覆至Ti-6Al-4V基材所形成之塗層可獲得優異的結合品質與生物相容性,若再經鹼熱處理則更可大幅提升生物活性。

This study adopts the use of selected vacuum plasma spray (VPS) as the coating process because it produces fewer oxides and has a stable crystalline nature and excellent adhesion during cladding. Titanium alloy (Ti-6Al-4V) was chosen as the substrate and Ta powder as the coating material. Spraying was carried out in three layers. The melting rate of Ta powder was controlled by applying fine, medium, and coarse powder particle diameters to the inner, middle, and outer layer respectively to form a coating that increases porosity from inside out. In addition, the substrate was preheated at 650 ° C to enhance the interface fusing effect. After the completing of Ta powder coating, it was examined by mechanical property test and biomedical property test.
Experimental results exhibited that Ta powder coating has a good cohesion with Ti-6Al-4V substrate interface. The average porosity of the coating surface is about 13%, the average roughness is about Ra: 22.2 μm, the average porosity of the cross-section (about 380 μm thick) is increased from 0.6 % of the inner layer to 7.6 % of the outer layer, and the corresponding hardness and elastic modulus (E) are decreased from 240 to 167 HV0.1 and from 148.3 to 123.1GPa, respectively. It then helps reduce the stress shielding effect of the coating and reduce the risk of coats flaking. In addition, the average bonding strength of the coating to the substrate is up to 54.5±2 MPa and the failure mode is in the coating surface and the tensile bar of the glue.
In biomedical property test, when the coating was immersed in the simulated body fluid (SBF) for 3 days after alkali-(1M NaOH) and heat- treatment (300 ° C), the surface was almost full of apatite, which increases according to the soaking time, and the bioactivity is significantly higher than the non- alkali- and heat- treatment term. However, when the test items were cultured in MG-63 cells, the cells had started to spread to the surroundings 3 hours later for both with alkali- and heat- treatment and without alkali-heat treatment. The longer the cultivating time is, the greater the area expands. The two test items showed excellent biocompatibility. The results of the whole study indicate that the coating formed by Ta coating on Ti-6Al-4V substrate by VPS process can obtain excellent bonding quality and biocompatibility, and the bioactivity can be improved by alkali- and heat- treatment.

摘要 I
Abstract II
目次 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 文獻探討 4
2.1 生醫材料的定義 4
2.1.1 生醫材料的特性 4
2.2 生醫材料的分類 5
2.2.1 金屬生醫材料 6
2.2.2 純鈦與鈦合金種類 8
2.2.3 鉭(Ta)金屬相關研究 10
2.2.4 生醫陶瓷材料 15
2.3 熱熔射技術原理 16
第三章 實驗規劃與流程 19
3.1 實驗規劃 19
3.2 實驗流程 21
3.2.1 基材前置處理方式 21
3.2.2 VPS製程處理及實驗參數規劃 21
3.2.3 熔射粉末 22
3.3 鹼熱處理 23
3.4 體外生物特性研究 24
3.4.1 浸泡人工模擬體液 24
3.4.2 人骨細胞培養 24
3.4.3 細胞表面形態觀察 25
3.5 實驗儀器設備 26
3.5.1 掃描式電子顯微鏡(SEM) 26
3.5.2 X-Ray繞射分析儀(XRD) 27
3.5.3 雷射共軛焦顯微分析儀 28
3.5.4 Vickers硬度試驗機 29
3.5.5 熱鑲埋機 30
3.5.6 砂輪切割機 31
3.5.7 恆溫培養箱 32
3.5.8 超高溫熱處理爐 33
3.5.9 萬能試驗機 34
第四章 結果與討論 35
4.1 單一鉭金屬塗層 36
4.1.1 不同電漿熔射功率對塗層特性之影響 36
4.1.1.1 不同電漿熔射功率之塗層表面形貌與粗糙度分析 38
4.1.1.2 不同電漿熔射功率之塗層截面形貌與元素分析 39
4.1.1.3 不同電漿熔射功率之塗層截面硬度分析 44
4.1.2 不同粉末顆粒直徑對塗層特性之影響 45
4.1.2.1 不同粉末顆粒直徑之塗層表面形貌與粗糙度分析 46
4.1.2.2 不同粉末顆粒直徑之塗層截面形貌 48
4.1.2.3 不同粉末顆粒直徑之塗層截面硬度 49
4.1.3 鹼熱處理後之表面形貌分析 50
4.1.3.1 使用不同NaOH濃度之鹼熱處理表面Mapping元素分析 51
4.1.3.2 不同鹼熱處理條件之浸泡SBF後表面形貌分析 54
4.1.3.2.1 使用不同NaOH濃度鹼熱處理對磷灰石生長情況之影響 54
4.1.3.2.2 不同粉末顆粒直徑鉭塗層表面對磷灰石生長情況之影響 55
4.2 漸進多孔Ta金屬塗層 57
4.2.1 漸進多孔Ta金屬塗層之表面形貌、表面粗糙度及截面孔隙率分析 58
4.2.2 漸進多孔Ta金屬塗層之截面硬度 59
4.2.3 Ta金屬漸進式塗層截面之楊氏模數分析 60
4.2.4 漸進多孔鉭金屬塗層之結合強度分析 61
4.2.5 基材與熔射試件經及未經鹼熱處理之磷灰石生長情形 63
4.2.6 浸泡SBF前後之磷灰石生長情況EDS分析 65
4.2.7 各個試件浸泡SBF前後之XRD分析 67
4.2.8 各個試件之表面接觸角分析 70
4.2.9 各個試件細胞貼附之表面形態分析 71
第五章 結論 73
第六章 參考文獻 75

[1]簡世霖,“人工髖關節置換術的復健”,人醫心傳,2006,28-33。
[2]黃彥臻,“美國骨科醫療器材市場現況分析”,IEK工業技術研究院分析報告,2008。
[3]聯合骨科器材股份有限公司,http://cht.uoc.com.tw/。
[4]“New technologies and surgical techniques promise 'personalized' orthopedic operations”, Latest Medical News and Research from Around the World, 2010.
[5]郭義松, ”醫療器材發展現況”,2014科技部工程司醫工學門成果發表會暨生物醫學工程及醫材產業高峰論壇,陽明大學,2014年12月。
[6]范家儀, “我國生技產業現況及淺談未來發展趨勢” ,中國生產力中心農業創新組 2016/10/06。
[7]經濟部台美產業合作推動辦公室、台北市美國商會、經濟部通訊產業發展推動小組、工業技術研究院共同舉辦“台美創新產業化商機交流與媒合會” ,104/11/13。
[8]H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.M. Kim, T. Kokubo, “Bonding of alkali- and heat-treated tantalum implants to bone”, Journal of Biomedical Materials Research, 2000, 53, 28-35.
[9]M.C. Kuo, S.K. Yen, “The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature”, Materials Science and Engineering C, 2002, 20, 153-160.
[10]C.S. Chien, T.Y. Liao, T.F. Hong, T.Y. Kuo, J.L. Wu and T.M. Lee, “Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders”, Surface and Coatings Technology, 2011, 205, 3141-3146.
[11]C.S. Chien, T.F. Hong, T.J. Han, T.Y. Kuo and T.Y. Liao, “Effects of different adhesive of hydroxyapatite power on microstructure and compounds of cladding layer by Nd-YAG deposition on Ti-6Al-4V substrate”, Applied Surface Science, 2011, 257, 2387-2393.
[12]X. Zheng, M. Huang, C. Ding, “Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings”, Biomaterials, 2000, 21, 841-849.
[13]S.W.K. Kweh, K.A. Khor, P. Cheang, “An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock”, Biomaterials, 2002, 23, 775-785.
[14]M. Inagaki, Y. Yokogawa, T. Kameyama, “Effects of plasma gas composition on bond strength of hydroxyapatite/titanium composite coatings prepared by rf-plasma spraying”, Journal of the European Ceramic Society, 2006, 26, 495-499.
[15]E. Chang, W.J. Chang, B.C. Wang, C.Y. Yang, “Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium, Part I Phase, microstructure and bonding strength”, Journal of Materials Science: Materials in Medicine, 1997, 8, 193-200.
[16]W. Weng, J.L. Baptista, “Preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol-gel method”, Journal of the American Ceramic Society, 1999, 82, 27-32.
[17]W. Weng, J.L. Baptista, “Alkoxide route for preparing hydroxyapatite and its coatings”, Biomaterials, 1998, 19, 125-131.
[18]O. Blind, L.H. Klein, B. Dailey, L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates”, Dental Materials, 2005, 21, 1017-1024.
[19]V. Nelea, V. Craciun, M. Iliescu, I.N. Mihailescu, H. Pelletier, P. Mille, J. Werckmann, “Growth of calcium phosphate thin films by in situ assisted ultraviolet pulsed laser deposition”, Applied Surface Science, 2003, 208-209, 638-644.
[20]G. Socol, P. Torricelli, B. Bracci, M. Iliescu, F. Miroiu, A. Bigi, J. Werckmann, I. N. Mihailescu, “Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition”, Biomaterials, 2004, 25, 2539-2545.
[21]M.C. Kuo, S.K. Yen, “The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature”, Materials Science and Engineering C, 2002, 20, 153-160.
[22]H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, “Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium”, Biomaterials, 2001, 22, 1253-1262.
[23]M. D. Bermúdez, F.J. Carrión, M.N. Ginés, R. López, “Erosion–corrosion of stainless steels, titanium, tantalum and zirconium”, Wear, 2005, 258, 693-700.
[24]J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, J.J. Krygier, “Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial”, J Bone Joint Surg Br, 1999, 81, 907-914.
[25]S.A. Hacking, J.D. Bobyn, K. Toh, M. Tanzer, J.J. Krygier, “Fibrous tissue ingrowth and attachment to porous tantalum”, Journal of Biomedical Materials Research, 2000, 52, 631-638.
[26]J.D. Bobyn, K.K. Toh, S.A. Hacking, M. Tanzer, J.J. Krygier, “Tissue response to porous tantalum acetabular cups: a canine model”, J Arthroplast., 1999, 14, 347-354.
[27]V.K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, “Porous Tantalum Structures for Bone Implants: Fabrication, Mechanical and In vitro Biological Properties”, Acta Biomater., 2010, 6, 3349–3359.
[28]R. Narayan, S. Bose, A. Bandyopadhyay, “Laser Processed Tantalum for Implants”, Biomaterials Science: Processing, Properties and Applications II: Ceramic Transactions, 2012, 237, 123-129.
[29]V.K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, “Direct Laser Processing of Tantalum Coating on Titanium for Bone Replacement Structures”, Acta Biomater., 2010, 6, 2329-2334.
[30]S. Dittrick, V.K. Balla, S. Bose, A. Bandyopadhyay,"Wear Performance of Laser Processed Tantalum Coatings", Materials Science and Engineering: C, 2011, 31, 1832-1835.
[31]Clemson Advisory Board for Biomaterials, “Definition of the word biomaterial”, The 6th Annnal Intermalionel Biomaterial Symposium, 1974, 20-24.
[32]J. B. Park, “Biomaterials, An Introduction”, New York: Plenue Press, 1979, 4.
[33]J. Lemaitre, A. Mirtchi, E. Munting, “Calcium phosphate cements for medical uses: state of the art and perspectives of development”, Sil Ind Ceram Sci Technol, 1987, 141-146.
[34]M. S. Block, J. N. Kent and L. S. Guerra, “Implants in density”, W. B. Saunders Company, 1997, 45-62.
[35]Ein, Cheryl, Olivia,“生物醫用材料”,股感知識庫,2015/02/07,https://www.stockfeel.com.tw/生物醫用材料
[36]J. B. Park, J. D. Bronzino, “Biomaterial: Principles and applications”, CRC Press, USA.
[37]H. C. Hsu, S. S. Lian, “Wear properties of Co-Cr-Mo-N plasma-melted surgical implant alloys”, Journal of Materials Processing Technology, 2003, 138,231-235.
[38]F. A. Shah, M. Trobos, P. Thomsen, A. Palmquist, “Commercially pure titanium (Cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other?”, Materials Science and Engineering: C, 2016, 62, 960-966.
[39]J. Nagels, M. Stokdijk, P. M. Rozing, “Stress shielding and bone resorption in shoulder arthropsplasty”, Journal of shoulder and Ebow Surgery, 2003, 12(1), 35-39.
[40]陳建任,“金屬材料在生醫產業的前瞻應用分析”,ITIS經濟部產業報告,2000。
[41]B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, “Experimental and clinical performance of porous tantalum in orthopedic surgery”, Biomaterials, 2006, 27, 4671-4681.
[42]S. Itoh, T. Muneta, K. Shinomiya, S. Ichinose, “Electron microscopic evaluation of the effects of stress-shielding on maturation of the mid-substance and ligament-bone junction of the reconstructed anterior cruciate ligament in rabbits”, Journal of Materials Science: Materials in Medicine, 1999, 10, 185-190.
[43]H. Tomas, G.S. Caevalho, M.H. Fernandes, A.P. Freire, L.M. Abrantes, “Effects of Co-Crcorrosion products and corresponding separate metal ions on human osteoblast-like cell cultures”, Journal of Materials Science: Materials in Medicine, 1996, 7, 291-296.
[44]H. S. Dobbs, M. J. Minski, “Metal ion release after total hip replacement”, Biomaterials, 1980, 1, 193-198.
[45]Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, “Cytocompatibility of various metal and development of new titanium alloys for medical implants”, Materials Science and Engineering A, 1998, 243, 250-256.
[46]S. Rao, Y. Okazaki, T. Tateishi, T. Ushida, Y. Ito, “Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3-E1 cells”, Materials Science and Engineering C, 1997, 4, 311-314.
[47]I. G. Macara, “Vanadium, an element in search of a role,” Trends Biochem. Sci., 1980, 5, 92-95.
[48]S. Zhang, X. Zeng, Y. Wang, K. Cheng, W. Weng, “Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings”, Surface and Coatings Technology, 2006, 6350-6354.
[49]洪胤庭,“純鈦及鈦合金特性及製程介紹”, 中工高雄會刊, 第21卷, 第一期, 12-22頁,2013。
[50]M. M. Houle, “GODS AND GODDESSES IN GREEK MYTHOLOGY”, USA: Enslow Publishers, Inc., 40 Industrial Road, Box 398, Berkeley Heights, NJ 07922 USA, 2001, 21.
[51]Colakis, Marianthe; Masello, Mary Joan (2007-06-30). "Tantalum". Classical Mythology & More: A Reader Workbook. ISBN 978-0-86516-573-1.
[52]C. Pokross, “Tantalum. In Metals Handbook” , 10th edn, Vol. 2. ASM International, Metals Park, Ohio, USA, 1990, 571.
[53] S. Lee, M. Doxbeck, J. Mueller, M. Cipollo, P. Cote, "Texture, structure and phase transformation in sputter beta tantalum coating", Surface and Coatings Technology, 2004, 177–178.
[54]T. Miyazaki, H. M. Kim, T. Kokubo, C. Ohtsuki, H. Kato, T. Nakamura, “Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid”, Biomaterials, 2002 , 23, 827-832.
[55]V.K. Balla, S. Bose, N.M. Davies, A. Bandyopadhyay, “Tantalum-A bioactive metal for implants”, JOM, 2010, 62, 61-64.
[56]G. Pfhiger, H. Plenk, N. Bohler, F. Grundschober, S. Schider, “Bone reaction to porous and grooved stainless steel, tantalum and niobium implants”, Biomaterials, 1982, 3, 45-50.
[57]S. Bencharit, W.C. Byrd, S. Altarawneh, B. Hosseini, A. Leong, G. Reside, T. Morelli, S.Offenbacher, “Development and Applications of Porous Tantalum Trabecular Metal-Enhanced Titanium Dental Implants”, Clinical implant dentistry and related research , 2013, 10, cid.12059.
[58]Z. Tang, Y. Xie, F. Yang, Y. Huang, C. Wang, K. Dai, X. Zheng, X. Zhang, “Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo”, PLOS One, 2013 , 8, e66263.
[59]A. Josa, M.S. Hanzlik, S. Judd,“Bone Ingrowth in Well-Fixed Retrieved Porous Tantalum Implants”, The Journal of Arthroplasty, 2013, 28, 922–927.
[60]B.R. Levine, D.W. Fabi, “Porous metals in orthopedic applications — a review. Porose Metalle in orthopadischen Anwendungen – Eine Ubersicht”, Materialwissenschaft und Werkstofftechnik , 2010, 41, 1001-1010.
[61]S. Yoshii, Y. Kakutani, T. Yamamuro, T. Nakamura, T. Kitsugi, M. Oka, T. Kokubo, M. Takagi,“Strength of Bonding between A-W Glass-Ceramic and the Surface of Bone Cortex”, Journal of Biomedical Materials Research, 1988, 22, 327-338.
[62]T. Kitsugi, T. Yamamuro, H. Takeuchi, M. Ono, “BondingBehavior of Three Types of Hydroxyapatite with Different Sintering Temperatures Implanted in Bone”, Clin. Orthop., 1988, 234, 280-290.
[63]S.M. Best, A.E. Porter, E.S. Thian, J. Huang, “Bioceramics: Past, present and for the future”, Journal of the European Ceramic Society, 2008, 28, 1319–1327.
[64]T. Kitsugi, T. Yamamuro, H. Takeuchi, M. Ono, “Bonding Behavior of Three Types of Hydroxyapatite with Different Sintering Temperatures Implanted in Bone”, Clin. Orthop., 1988, 234, 280-290.
[65]C.P. Lin, F.H. Lin, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser”, Biomaterials, 2000, 21, 637-643.
[66]S.M. Best, A.E. Porter, E.S. Thian, J. Huang, “Bioceramics: Past, present and for the future”, Journal of the European Ceramic Society, 2008, 28, 1319–1327.
[67]Seyed A. “Co-spraying of alumina and stainless steel by d.c. plasma jets”. PhD Thesis, University of Limoges France and GIK Institute, Topi, Pakistan, 26 Feb 2004, Limoges France.
[68]E. Lugscheider, H. Eschnauer, B.Häuser, D. Jäger, “Vacuum plasma spraying of tantalum and niobium”, Journal of vacuum science and technology A, 1985, 3, 2469-2474.
[69]K. Ozekia, H. Aokib, T. Masuzawa, “Influence of the hydrotherma temperature and pH on the crystallinity of a sputtered hydroxyapatite film”, Applied Surface Science, 2010, 256, 7027-7031.
[70]T. Kokubo, H. Takadama, “How useful is SBF in predicting in vivo bone bioacticity?”, Biomaterials,2006, 27, 2907-2915.
[71]H. D. Steffens, H. M. Höhle, E. Ertürk, “Low pressure plasma spraying of reactive materials”, Thin Solid Films, 1980, 73, 19-29.
[72]Prochazka, Z., Khor, K. A. and Cizek, J., “Influence of input parameters on splat formation and coating thermal diffusivity in plasma spraying, Advanced Engineering Materials”, 2006,8(7), 645-650.
[73]H. M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi, T. Nakamura,“Bioactive microporous titanium surface layer on titanium substrate”,J. Biomed. Mater. Res, 2000, 52, 553-557.
[74]Kaelble DH. Physical Chemistry of Adhesion. NewYork: Wiley-Interscience, 1971, 149-189.
[75]Mittal KL. Surface contamination: an overview. In: Mittal KL, ed. Surface Contamination, Vol. 1. New York: Plenum Press, 1979.
[76]Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, et al.Roughness response genes in osteoblasts. Bone 2004, 35, 124–33.
[77]Novaes Jr AB, Papalexiou V, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites. A histomorphometric study in dogs. Clin Oral Implants Res 2004, 15, 34–43.
[78]Papalexiou V, Novaes Jr AB, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites. A confocal laser scanning microscopic study. Clin Oral Implants Res 2004, 15, 44–53.
[79]J. S. Hirshhorn, A. A. McBeath , M. R. Dustoor , “Porous titanium surgical implant materials”, J. Biomed. Mater. Res. Symp 1972, 2, 49–69.
[80]Webster JG. Encycropedia of medical devices and instrumentation. NY: Wiley; 1988.
[81]Park JB, Lakes RS. Biomaterials: An introduction. 2nd Ed. New York: Plenum; 1992.
[82]Cook SD, Thomas KH, Haddad RH Jr. Histologic analysis of retrieved human porous-coated total joint components. Clin Ortho 1988, 234, 90–101.
[83]R. Venkataraman, G. Das, S.R. Singh, L.C. Pathak, R.N. Ghosh, B. Venkataraman, R. Krishnamurthy, “Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings”, Mater. Sci. Eng., A, 2000, 269-274.
[84]V.K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, Direct laser processing of tantalum coating on titanium for bone replacement structures, Acta Biomater. , 2010, 6, 2329-2334.
[85]A. Mellal, H. W. A. Wiskott, J. Botsis, S. S. Scherrer, U. C. Belser, “Stimulating effect of implant loading on surrounding bone”, Clinical Oral Implants Research, 2004, 15, 239-248.
[86]F.A Akin, H. Zreiqat, M. Wijesundra, J. Biomed, Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants, Journal of Biomedical Materials Research, 2001, 57, 588-596.
[87]J. Black, “Biologic Performance of Tantalum”, Clin. Mater., 1994, 16(3), 167-173.
[88]H. M. Kim, T. Himeno, M. Kawashita, T. Kokubo, T. Nakamura, “The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment”, J. R. Soc. Interface, 2004, 1, 17-22.
[89]T. Miyazaki, H.M. Kim, T. Kokubo, H. Kato, T. Nakamura, “Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid,” J. Sol-Gel Sci. Technol., 2001, 21, 83–88.
[90]T. Miyazaki, H.M. Kim, F. Miyaji, T. Kokubo, H. Kato, T. Nakamura, “Bioactive tantalum metal prepared by NaOH treatment,” Journal of Biomedical Materials Research, 2000, 50, 35-42.
[91]T. Miyazaki, H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, “Bonelike apatite formation on chemically treated tantalum metal”, Oxford: Elsevier, 1996, 9, 317-320.
[92]T. Miyazaki, H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, “Apatite-forming ability of sodium tantalate gels”, Bioceramics, New York: World Scientific, 1998, 11, 481-484.
[93]S. Nishiguchi, T. Nakamura, M. Kobayashi, W. Q. Yan, H. M. Kim, F. Miyaji, T. Kokubo, “The effect of heat treatment on bone bonding ability of alkali-treated titanium”, Bioceramics, Oxford: Elsevier, 1997, 10, 561-564.
[94]D. R. Carter, D. M. Spengler, “Mechanical properties and composition of cortical bone”, Clin. Orthop. 1978, 135, 192-217.
[95]L.P.Huang, Y.T.Xie, H.Ji,Y.Zeng, X.B.Zheng,“Characterization of HA/Ta Composite Coatings Fabricated by Vacuum Plasma Spraying”, Materials Science Forum, 2013, 761, 113-116.
[96]J. D. Bobyn, R. M. Pilliar, H. U. Cameron, G. C. Weatherly, “The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone”, Clin. Orthop, 1980, 150, 263-270.
[97]R. M. Pilliar, “Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth”, Clin. Orthop, 1983, 176, 42-51.
[98]S. D. Cook, K. A. Walsh, Jr. R. J. Hadded, “Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants”, Clin. Orthop. ,1985, 193, 271-280.
[99]R. Geesink, K. D. Groot, “Bonding of Bone to Apatite-Coated Implants”, The Bone & Joint Journal, 1988, 70, 17-22.
[100]P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. de Groo,“The role of hydrated silica, titania, and alumina in inducing apatite on implants”, Journal of Biomedical Materials Research, 1994, 28, 7-15.
[101]T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials. , 2003, 24, 2161-2175.
[102]S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM International, 2002.
[103]X. Zhu, J. Chena, L. Scheidelera, R. Reichlb, G.G. Juergen, “Effects of topography and composition of titanium surface oxides on osteoblast responses”, Biomaterials, 2004, 25, 4087-4103.
[104]J.L. Ricci, H. Alexander, Key Engineering Materials, 2001, 179, 198-199.
[105]J.L. Ricci, J. Charvet, S.R. Frenkel, R. Chang, P. Nadkarni, J. Turner, H. Alexander, Bone Response to Laser Microtextured Surfaces, Em2 Inc., Toronto, 2000, 1.
[106]W.O. Soboyejo, C. Mercer, S. Allameh, B. Nemetski, N. Marcantonio, J.L. Ricci, Key Engineering Materials, 2001, 203, 198-199.
[107]S. Mwenifumbo, M. Li, J. Chen, A. Beye, W.O. Soboyejo, Journal of Materials Science: Materials in Medicine, 2007, 18, 9.
[108]L. Hao, J. Lawrence, L. Li, Applied Surface Science, 2005, 247, 602.
[109]N. Mirhosseini, P.L. Crouse, M.J.J. Schmidtha, L. Li, D. Garrod, Applied Surface Science, 2007, 253, 7738.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top