跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳仁德
研究生(外文):Ren-De Chen
論文名稱:可直接3D列印之含纖維素奈米纖絲水性聚胺脂並於生物之應用
論文名稱(外文):Direct 3D printing of waterborne polyurethane dispersion containing cellulose nanofibers for bioapplications
指導教授:徐善慧徐善慧引用關係
指導教授(外文):Shan-Hui Hsu
口試委員:黃智峯侯詠德
口試委員(外文):Chih-Feng HuangYung-Te Hou
口試日期:2018-08-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:3D列印水性PU纖維素奈米纖絲奈米複合物
DOI:10.6342/NTU201900550
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
作為一種新型的積層製造技術,3D列印技術在各個領域蓬勃發展。與傳統的製造技術不同,3D列印技術具有用戶自訂的特點,以此避免了高昂的模具。聚胺脂 (polyurethane, PU) 作為一種高性能的材料備受關注。水性PU離聚物是綠色的、環境友好的高分子,但是通常PU的水分散液黏度太低,無法直接3D列印。在本研究中,通過在合成過程中加入纖維素奈米纖絲 (cellulose nanofibrils, CNFs),成功製備出可直接列印的PU複合物。通過調控PU製備過程中加入的中和劑的量,可以有效改變最終PU/CNF複合分散液的黏度。流變學分析表明複合墨水有著優異的列印性。TEM圖像揭示了,借助物理化學多種鍵接,CNFs穿過多個PU奈米粒子形成串燒的結構,這一結構成功提高了PU/CNF複合分散液的黏度。3D列印後的PU/CNF支架有著優異的結構保真度和穩定性。同時,PU/CNF支架的壓縮模量遠高於通過加入增稠劑 (PEO) 列印的支架。在引入CNFs後,PU的體外降解速率提高了3倍。纖維母細胞在3D列印的支架中保持活性與增殖超過一周。PU/CNF支架將會有著各種各樣的應用,特別是在生物醫用領域。此外,CNF與PU之間的相互作用力提供了一種新型的、獨一無二的方法去調整水性PU分散液的黏度,以至於可以直接3D列印。
3D printing technology has been booming in various fields as a new type of layer-by-layer additive manufacturing technology. Unlike traditional manufacturing techniques, 3D printing has the advantage of customization and does not require expensive molds. Polyurethane (PU) has attracted attention as high performance materials. Waterborne PU ionomers are green, eco-friendly polymers but the viscosity of PU dispersion is generally too low for direct 3D printing. In the study, printable PU composites were successfully prepared by introducing cellulose nanofibrils (CNFs) during the synthesis of PU. The viscosity of the PU/CNF composite dispersion was effectively regulated by the amount of neutralizing agent in preparing anionic PU. Rheological measurements supported the good printability of the composite ink. TEM images revealed that CNFs linked multiple PU nanoparticles to form a ‘skewer’ structure through the physical and chemical interaction force, which successfully increased the viscosity of PU/CNF water dispersion. PU/CNF scaffolds were 3D printed from the composite ink with excellent pattern fidelity and structure stability. Meanwhile, the compression modulus of PU/CNF scaffolds was much higher than that of scaffolds printed with the common viscosity enhancer (PEO). The degradation rate of PU increased three times after the introduction of CNFs. Fibroblasts kept proliferating in the 3D printed PU/CNF scaffolds for more than a week. The printed PU/CNF composites may have various applications particularly in the biomedical field. Moreover, the interaction between CNF and PU may offer a novel and unique way to tune the viscosity of waterborne PU dispersion for direct 3D printing.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 XI
表目錄 XIII
第一章 文獻回顧 1
1.1. 生物醫用材料 1
1.1.1. 金屬醫用材料 1
1.1.2. 非金屬醫用材料 1
1.1.3. 複合材料 3
1.2. 高分子奈米複合材料 4
1.2.1. 高分子與金屬奈米複合材料 5
1.2.2. 高分子與無機非金屬奈米複合材料 5
1.2.3. 高分子與高分子奈米複合材料 6
1.3. 聚胺脂材料 (polyurethane) 7
1.3.1. 油性聚胺脂材料 8
1.3.2. 水性聚胺脂材料 8
1.3.3. 水性聚胺脂材料的合成 9
1.4. 水性聚胺脂奈米複合材料 11
1.5. 三維列印 (three-dimensional printing, 3D printing) 12
1.6. 纖維素 (cellulose) 及其複合材料 13
1.6.1. 奈米纖維素 (nanocellulose) 13
1.6.2. 奈米纖維素與聚氨脂複合材料 14
1.7. 研究動機 15
第二章 研究方法 17
2.1. 研究架構 17
2.2. 纖維素奈米纖絲 (cellulose nanofiber, CNF) 的製備與表徵 19
2.2.1. CNF的製備與改質率的測定 19
2.2.2. 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 20
2.2.3. 掃描電子顯微鏡 (scanning electron microscope, SEM) 20
2.3. 水性生物可降解聚胺脂 (waterborne biodegradable polyurethane, PU) 的製備與表徵 21
2.3.1. PU的製備 21
2.3.2. 動態光散射 (dynamic light scattering, DLS) 分析 21
2.4. PU/CNF複合薄膜的製備與表徵 23
2.4.1. PU/CNF複合物的多種製備方式 23
2.4.2. PU/CNF複合薄膜的製備 24
2.4.3. 熱性能分析 24
2.4.4. 拉伸試驗 24
2.4.5. 親疏水性 25
2.5. PU/CNF複合墨水的製備與表徵 25
2.5.1. PU/CNF複合墨水的製備 25
2.5.2. 流變學分析 (rheology measurement) 25
2.5.3. 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 26
2.6. 3D列印製備PU/CNF和PU/PEO支架 (scaffold) 26
2.6.1. PU/PEO複合物的製備 26
2.6.2. 3D列印製備複合支架 26
2.6.3. 紫外光譜儀 (ultraviolet spectrograph, UV) 分析 27
2.7. 支架物理化學性能表徵 27
2.7.1. 掃描電子顯微鏡 (scanning electron microscope, SEM) 27
2.7.2. 動態熱機械分析 (dynamic thermomechanical analysis, DMA) 27
2.7.3. 體外降解實驗 28
2.8. 組織工程實驗 28
2.8.1. 細胞培養 28
2.8.2. 支架滅菌與細胞種植 28
2.8.3. 細胞形態 29
2.8.4. 細胞存活率 29
2.9. 統計學分析 29
第三章 實驗結果 30
3.1. 纖維素奈米纖絲 30
3.1.1. SEM和TEM之CNF微觀形態 30
3.1.2. 超音波分散之CNF水分散液 30
3.2. 多方法製備CNFs和PU複合物 30
3.3. 超音波製備之PU/CNF奈米複合物之物性分析 31
3.3.1. 動態光散射分析 31
3.3.2. 熱性能分析 31
3.3.4. 親疏水性分析 32
3.3.5. 機械性能分析 32
3.4. 原位製備之PU/CNF奈米複合物之物性分析 32
3.4.1. 機械性能分析 32
3.4.2. PU/CNF複合墨水(有額外TEA的加入)之製備 33
3.4.3. 動態光散射分析 33
3.4.4. 親疏水性分析 34
3.4.5. 不同CNF改質率 (modification ratio) 對合成配方之影響 34
3.5. 原位製備之PU/CNF複合墨水流變學分析 34
3.5.1. 靜態剪切模式 34
3.5.2. 動態應變掃描模式 35
3.6. PU/CNF複合墨水之微觀形態 35
3.6.1. 穿透電子顯微鏡影像 35
3.6.2. 特殊結構機理猜想 35
3.7. 3D列印複合支架 36
3.7.1.複合支架列印 36
3.7.2. PU/CNF支架清洗 36
3.7.3. PU/CNF支架乾燥 36
3.7.4. PU/CNF和PU/PEO複合合支架列印凍乾 36
3.7.5. 複合支架於液氮脆斷 37
3.7.6. 複合支架掃描電子顯微鏡之影像 37
3.8. 體外降解 37
3.8.1. 支架重量變化 37
3.8.2. 支架尺寸變化 38
3.8.3. 支架壓縮模量變化 38
3.9. 支架組織工程實驗 38
3.9.1. 細胞形態 38
3.9.2. 細胞存活率 39
第四章 討論 40
4.1. 纖維素奈米纖絲 40
4.2. 多方法製備CNFs和PU複合物 40
4.3. 超音波製備之PU/CNF奈米複合物之物性分析 40
4.4. 原位製備之PU/CNF奈米複合物之物性分析 41
4.4.1. 機械性能分析 41
4.4.2. PU/CNF複合墨水(有額外TEA的加入)之製備 41
4.4.3. 動態光散射分析 41
4.4.4. 親疏水性分析 42
4.4.5. 不同CNF改質率 (modification ratio) 對合成配方之影響 42
4.5. 原位製備之PU/CNF複合墨水流變學分析 43
4.6. PU/CNF複合墨水之微觀形態 43
4.7. 3D列印複合支架 44
4.7.1. 複合支架列印 44
4.7.2. PU/CNF支架清洗與乾燥 45
4.7.3. 複合支架於液氮脆斷 45
4.7.4. 複合支架掃描電子顯微鏡之影像 45
4.8. 體外降解 46
4.9. 支架組織工程實驗 46
4.9.1. 細胞形態 46
4.9.2. 細胞存活率 47
第五章 結果 48
參考文獻 49
[1] Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, Cytocompatibility of various metal and development of new titanium alloys for medical implants, Materials Science and Engineering: A 243(1-2) (1998) 250-256.
[2] L.S. Bertol, W.K. Júnior, F.P. da Silva, C. Aumund-Kopp, Medical design: direct metal laser sintering of Ti–6Al–4V, Materials & Design 31(8) (2010) 3982-3988.
[3] M.H. Cohen, K. Melnik, A.A. Boiarski, M. Ferrari, F.J. Martin, Microfabrication of silicon-based nanoporous particulates for medical applications, Biomedical Microdevices 5(3) (2003) 253-259.
[4] T. Ping, C. Goodman, G. Cho, J. Drewery, W. Hong, H. Lee, S. Kaplan, A. Mireshghi, V. Perez-Mendez, D. Wildermuth, Amorphous silicon pixel layers with cesium iodide converters for medical radiography, (1993).
[5] J. Canales, M.E. Muñoz, M. Fernández, A. Santamaría, Rheology, electrical conductivity and crystallinity of a polyurethane/graphene composite: Implications for its use as a hot-melt adhesive, Composites Part A: Applied Science and Manufacturing 84 (2016) 9-16.
[6] C.-M. Tang, Y.-H. Tian, S.-H. Hsu, Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization, Materials 8(8) (2015) 4895-4911.
[7] S.-h. Hsu, H.-J. Tseng, Y.-C. Lin, The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites, Biomaterials 31(26) (2010) 6796-6808.
[8] S. Bhargava, R. Lewis, M. Kubota, X. Li, S. Advani, J. Deitzel, A. Prasad, Adhesion study of high reflectivity water-based coatings, International Journal of Adhesion and Adhesives 40 (2013) 120-128.
[9] G. Andrade, E. Barbosa-Stancioli, A.P. Mansur, W. Vasconcelos, H. Mansur, Design of novel hybrid organic–inorganic nanostructured biomaterials for immunoassay applications, Biomedical Materials 1(4) (2006) 221.
[10] A. Santamaria-Echart, L. Ugarte, K. Gonzalez, L. Martin, L. Irusta, A. Gonzalez, M.A. Corcuera, A. Eceiza, The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats, Carbohydrate polymers 166 (2017) 146-155.
[11] H. Su, F. Sun, J. Jia, H. He, A. Wang, G. Zhu, A highly porous medical metal–organic framework constructed from bioactive curcumin, Chemical Communications 51(26) (2015) 5774-5777.
[12] M. Shahrousvand, M.S. Hoseinian, M. Ghollasi, A. Karbalaeimahdi, A. Salimi, F.A. Tabar, Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior, Materials Science and Engineering: C 74 (2017) 556-567.
[13] J. Xie, Q. Wu, D. Zhao, Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties, Carbon 50(3) (2012) 800-807.
[14] N.M. Zain, E.N. Roslin, S. Ahmad, Preliminary study on bio-based polyurethane adhesive/aluminum laminated composites for automotive applications, International Journal of Adhesion and Adhesives 71 (2016) 1-9.
[15] E. Yan, M. Cao, Y. Wang, X. Hao, S. Pei, J. Gao, Y. Wang, Z. Zhang, D. Zhang, Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery, Materials Science and Engineering: C 58 (2016) 1090-1097.
[16] R. Surudžić, A. Janković, N. Bibić, M. Vukašinović-Sekulić, A. Perić-Grujić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Physico–chemical and mechanical properties and antibacterial activity of silver/poly (vinyl alcohol)/graphene nanocomposites obtained by electrochemical method, Composites Part B: Engineering 85 (2016) 102-112.
[17] S. Bhargava, M. Kubota, R. Lewis, S. Advani, A. Prasad, J. Deitzel, Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating, Progress in Organic Coatings 79 (2015) 75-82.
[18] G.M. Bayley, P.E. Mallon, Porous microfibers by the electrospinning of amphiphilic graft copolymer solutions with multi-walled carbon nanotubes, Polymer 53(24) (2012) 5523-5539.
[19] A. Mostafa, H. Oudadesse, M. Mohamed, E. Foad, Y. Le Gal, G. Cathelineau, Convenient approach of nanohydroxyapatite polymeric matrix composites, Chemical Engineering Journal 153(1-3) (2009) 187-192.
[20] C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, S. Sun, Au–Fe3O4 dumbbell nanoparticles as dual‐functional probes, Angewandte Chemie International Edition 47(1) (2008) 173-176.
[21] S. Chen, A. Osaka, N. Hanagata, Collagen-templated sol–gel fabrication, microstructure, in vitro apatite deposition, and osteoblastic cell MC3T3-E1 compatibility of novel silica nanotube compacts, Journal of Materials Chemistry 21(12) (2011) 4332-4338.
[22] A. Santamaria-Echart, L. Ugarte, C. García-Astrain, A. Arbelaiz, M.A. Corcuera, A. Eceiza, Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites, Carbohydrate polymers 151 (2016) 1203-1209.
[23] C. García-Astrain, K. González, T. Gurrea, O. Guaresti, I. Algar, A. Eceiza, N. Gabilondo, Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels, Carbohydrate polymers 149 (2016) 94-101.
[24] S. Kulikov, L. Bayazitova, O. Tyupkina, P. Zelenikhin, M. Salnikova, E. Bezrodnykh, V. Tikhonov, Evaluation of a method for the determination of antibacterial activity of chitosan, Applied biochemistry and microbiology 52(5) (2016) 502-507.
[25] S.-h. Hsu, K.-C. Hung, Y.-Y. Lin, C.-H. Su, H.-Y. Yeh, U.-S. Jeng, C.-Y. Lu, S.A. Dai, W.-E. Fu, J.-C. Lin, Water-based synthesis and processing of novel biodegradable elastomers for medical applications, Journal of Materials Chemistry B 2(31) (2014) 5083-5092.
[26] S.-h. Hsu, C.-T. Hsieh, Y.-M. Sun, Synthesis and characterization of waterborne polyurethane containing poly (3-hydroxybutyrate) as new biodegradable elastomers, Journal of Materials Chemistry B 3(47) (2015) 9089-9097.
[27] G. Biesmans, A. Mertens, L. Duffours, T. Woignier, J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels, Journal of non-crystalline solids 225 (1998) 64-68.
[28] S. Oprea, V.O. Potolinca, P. Gradinariu, A. Joga, V. Oprea, Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents, Cellulose 23(4) (2016) 2515-2526.
[29] A. Ivdre, V. Mucci, P. Stefani, M. Aranguren, U. Cabulis, Nanocellulose reinforced polyurethane obtained from hydroxylated soybean oil, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016, p. 012011.
[30] X. Kong, L. Zhao, J.M. Curtis, Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals, Carbohydrate polymers 152 (2016) 487-495.
[31] A. Santamaria-Echart, L. Ugarte, A. Arbelaiz, N. Gabilondo, M.A. Corcuera, A. Eceiza, Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites, European Polymer Journal 76 (2016) 99-109.
[32] S.-h. Hsu, C.-W. Chen, K.-C. Hung, Y.-C. Tsai, S. Li, Thermo-responsive polyurethane hydrogels based on poly (ε-caprolactone) diol and amphiphilic polylactide-poly (ethylene glycol) block copolymers, Polymers 8(7) (2016) 252.
[33] G.-H. Wu, S.-h. Hsu, Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications, Colloids and Surfaces B: Biointerfaces 146 (2016) 825-832.
[34] L. Lei, L. Zhong, X. Lin, Y. Li, Z. Xia, Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink, Chemical Engineering Journal 253 (2014) 518-525.
[35] Y.-c. Chien, W.-T. Chuang, U.-S. Jeng, S.-h. Hsu, Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers, ACS applied materials & interfaces 9(6) (2017) 5419-5429.
[36] S.-F. Zhang, R.-M. Wang, Y.-F. He, P.-F. Song, Z.-M. Wu, Waterborne polyurethane-acrylic copolymers crosslinked core–shell nanoparticles for humidity-sensitive coatings, Progress in Organic Coatings 76(4) (2013) 729-735.
[37] C.-H. Chen, Y.-T. Kan, C.-F. Mao, W.-T. Liao, C.-D. Hsieh, Fabrication and characterization of water-based polyurethane/polyaniline conducting blend films, Surface and Coatings Technology 231 (2013) 71-76.
[38] C.A. Heck, J.H.Z. dos Santos, C.R. Wolf, Waterborne polyurethane: the effect of the addition or in situ formation of silica on mechanical properties and adhesion, International Journal of Adhesion and Adhesives 58 (2015) 13-20.
[39] Y.-P. Chen, S.-h. Hsu, Preparation and characterization of novel water-based biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drugs, Journal of Materials Chemistry B 2(21) (2014) 3391-3401.
[40] T.-Y. Chi, H.-Y. Yeh, J.-J. Lin, U.-S. Jeng, S.-h. Hsu, Amphiphilic silver-delaminated clay nanohybrids and their composites with polyurethane: physico-chemical and biological evaluations, Journal of Materials Chemistry B 1(16) (2013) 2178-2189.
[41] K.C. Hung, C.S. Tseng, S.h. Hsu, Synthesis and 3D printing of biodegradable polyurethane elastomer by a water‐based process for cartilage tissue engineering applications, Advanced healthcare materials 3(10) (2014) 1578-1587.
[42] K.-C. Hung, C.-S. Tseng, L.-G. Dai, S.-h. Hsu, Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering, Biomaterials 83 (2016) 156-168.
[43] B. Youssef, A. Soumia, C. Omar, L. Abdelaziz, Z. Mohamed, Preparation and properties of bionanocomposite films reinforced with nanocellulose isolated from Moroccan alfa fibres, Autex Research Journal 15(3) (2015) 164-172.
[44] J. Juntaro, S. Ummartyotin, M. Sain, H. Manuspiya, Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties, Carbohydrate polymers 87(4) (2012) 2464-2469.
[45] A. Kiziltas, B. Nazari, E.E. Kiziltas, D.J. Gardner, Y. Han, T.S. Rushing, Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system, Carbohydrate polymers 140 (2016) 393-399.
[46] J. Yang, C.-R. Han, J.-F. Duan, F. Xu, R.-C. Sun, Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels, ACS applied materials & interfaces 5(8) (2013) 3199-3207.
[47] C. Tian, S. Fu, Q. Meng, L.A. Lucia, New insights into the material chemistry of polycaprolactone-grafted cellulose nanofibrils/polyurethane nanocomposites, Cellulose 23(4) (2016) 2457-2473.
[48] X. Zhou, J. Sethi, S. Geng, L. Berglund, N. Frisk, Y. Aitomäki, M.M. Sain, K. Oksman, Dispersion and reinforcing effect of carrot nanofibers on biopolyurethane foams, Materials & Design 110 (2016) 526-531.
[49] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, K.-Y.A. Lin, Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP, Polymer 72 (2015) 395-405.
[50] G.-m. Wu, G.-f. Liu, J. Chen, Z.-w. Kong, Preparation and properties of thermoset composite films from two-component waterborne polyurethane with low loading level nanofibrillated cellulose, Progress in Organic Coatings 106 (2017) 170-176.
[51] M.L. Auad, V.S. Contos, S. Nutt, M.I. Aranguren, N.E. Marcovich, Characterization of nanocellulose‐reinforced shape memory polyurethanes, Polymer International 57(4) (2008) 651-659.
[52] G. Siqueira, D. Kokkinis, R. Libanori, M.K. Hausmann, A.S. Gladman, A. Neels, P. Tingaut, T. Zimmermann, J.A. Lewis, A.R. Studart, Cellulose nanocrystal inks for 3D printing of textured cellular architectures, Advanced Functional Materials 27(12) (2017) 1604619.
[53] C.A. Murphy, M.N. Collins, Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing, Polymer Composites 39(4) (2018) 1311-1320.
[54] K. Markstedt, A. Mantas, I. Tournier, H.c. Martínez Ávila, D. Hägg, P. Gatenholm, 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications, Biomacromolecules 16(5) (2015) 1489-1496.
[55] N.B. Palaganas, J.D. Mangadlao, A.C.C. de Leon, J.O. Palaganas, K.D. Pangilinan, Y.J. Lee, R.C. Advincula, 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography, ACS applied materials & interfaces 9(39) (2017) 34314-34324.
[56] S. Shin, S. Park, M. Park, E. Jeong, K. Na, H.J. Youn, J. Hyun, Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives, BioResources 12(2) (2017) 2941-2954.
[57] Y.-J. Wang, U.-S. Jeng, S.-h. Hsu, Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering, ACS Biomaterials Science & Engineering 4(4) (2018) 1397-1406.
[58] D. Roy, J.T. Guthrie, S. Perrier, Graft polymerization: Grafting poly (styrene) from cellulose via reversible addition− fragmentation chain transfer (RAFT) polymerization, Macromolecules 38(25) (2005) 10363-10372.
[59] J. Yi, Q. Xu, X. Zhang, H. Zhang, Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states, Polymer 49(20) (2008) 4406-4412.
[60] Y.S. Song, J.R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon 43(7) (2005) 1378-1385.
[61] K. Benhamou, H. Kaddami, A. Magnin, A. Dufresne, A. Ahmad, Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface, Carbohydrate polymers 122 (2015) 202-211.
[62] S. Bhattacharjee, DLS and zeta potential–What they are and what they are not?, Journal of Controlled Release 235 (2016) 337-351.
[63] G. Mondragon, A. Santamaria-Echart, M. Hormaiztegui, A. Arbelaiz, C. Peña-Rodriguez, V. Mucci, M. Corcuera, M. Aranguren, A. Eceiza, Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals from sisal fibres, Journal of Polymers and the Environment 26(5) (2018) 1869-1880.
[64] G.-m. Wu, J. Chen, S.-p. Huo, G.-f. Liu, Z.-w. Kong, Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers, Carbohydrate polymers 105 (2014) 207-213.
[65] Y. Zhu, J. Hu, H. Luo, R.J. Young, L. Deng, S. Zhang, Y. Fan, G. Ye, Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites, Soft Matter 8(8) (2012) 2509-2517.
[66] M. Lee, M.H. Heo, H.-H. Lee, Y.-W. Kim, J. Shin, Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites, Carbohydrate polymers 159 (2017) 125-135.
[67] T. Wu, M. Frydrych, K. O’Kelly, B. Chen, Poly (glycerol sebacate urethane)–cellulose nanocomposites with water-active shape-memory effects, Biomacromolecules 15(7) (2014) 2663-2671.
[68] M. Jonoobi, J. Harun, A.P. Mathew, K. Oksman, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Composites Science and Technology 70(12) (2010) 1742-1747.
[69] M.M. Ruiz, J.Y. Cavaillé, A. Dufresne, C. Graillat, J.F. Gérard, New waterborne epoxy coatings based on cellulose nanofillers, Macromolecular Symposia, Wiley Online Library, 2001, pp. 211-222.
[70] F. Qu, J.L. Holloway, J.L. Esterhai, J.A. Burdick, R.L. Mauck, Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair, Nature communications 8(1) (2017) 1780.
[71] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-5491.
[72] F.-L. He, D.-W. Li, J. He, Y.-Y. Liu, F. Ahmad, Y.-L. Liu, X. Deng, Y.-J. Ye, D.-C. Yin, A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning, Materials Science and Engineering: C 86 (2018) 18-27.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top