|
[1] Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, Cytocompatibility of various metal and development of new titanium alloys for medical implants, Materials Science and Engineering: A 243(1-2) (1998) 250-256. [2] L.S. Bertol, W.K. Júnior, F.P. da Silva, C. Aumund-Kopp, Medical design: direct metal laser sintering of Ti–6Al–4V, Materials & Design 31(8) (2010) 3982-3988. [3] M.H. Cohen, K. Melnik, A.A. Boiarski, M. Ferrari, F.J. Martin, Microfabrication of silicon-based nanoporous particulates for medical applications, Biomedical Microdevices 5(3) (2003) 253-259. [4] T. Ping, C. Goodman, G. Cho, J. Drewery, W. Hong, H. Lee, S. Kaplan, A. Mireshghi, V. Perez-Mendez, D. Wildermuth, Amorphous silicon pixel layers with cesium iodide converters for medical radiography, (1993). [5] J. Canales, M.E. Muñoz, M. Fernández, A. Santamaría, Rheology, electrical conductivity and crystallinity of a polyurethane/graphene composite: Implications for its use as a hot-melt adhesive, Composites Part A: Applied Science and Manufacturing 84 (2016) 9-16. [6] C.-M. Tang, Y.-H. Tian, S.-H. Hsu, Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization, Materials 8(8) (2015) 4895-4911. [7] S.-h. Hsu, H.-J. Tseng, Y.-C. Lin, The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites, Biomaterials 31(26) (2010) 6796-6808. [8] S. Bhargava, R. Lewis, M. Kubota, X. Li, S. Advani, J. Deitzel, A. Prasad, Adhesion study of high reflectivity water-based coatings, International Journal of Adhesion and Adhesives 40 (2013) 120-128. [9] G. Andrade, E. Barbosa-Stancioli, A.P. Mansur, W. Vasconcelos, H. Mansur, Design of novel hybrid organic–inorganic nanostructured biomaterials for immunoassay applications, Biomedical Materials 1(4) (2006) 221. [10] A. Santamaria-Echart, L. Ugarte, K. Gonzalez, L. Martin, L. Irusta, A. Gonzalez, M.A. Corcuera, A. Eceiza, The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats, Carbohydrate polymers 166 (2017) 146-155. [11] H. Su, F. Sun, J. Jia, H. He, A. Wang, G. Zhu, A highly porous medical metal–organic framework constructed from bioactive curcumin, Chemical Communications 51(26) (2015) 5774-5777. [12] M. Shahrousvand, M.S. Hoseinian, M. Ghollasi, A. Karbalaeimahdi, A. Salimi, F.A. Tabar, Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior, Materials Science and Engineering: C 74 (2017) 556-567. [13] J. Xie, Q. Wu, D. Zhao, Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties, Carbon 50(3) (2012) 800-807. [14] N.M. Zain, E.N. Roslin, S. Ahmad, Preliminary study on bio-based polyurethane adhesive/aluminum laminated composites for automotive applications, International Journal of Adhesion and Adhesives 71 (2016) 1-9. [15] E. Yan, M. Cao, Y. Wang, X. Hao, S. Pei, J. Gao, Y. Wang, Z. Zhang, D. Zhang, Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery, Materials Science and Engineering: C 58 (2016) 1090-1097. [16] R. Surudžić, A. Janković, N. Bibić, M. Vukašinović-Sekulić, A. Perić-Grujić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Physico–chemical and mechanical properties and antibacterial activity of silver/poly (vinyl alcohol)/graphene nanocomposites obtained by electrochemical method, Composites Part B: Engineering 85 (2016) 102-112. [17] S. Bhargava, M. Kubota, R. Lewis, S. Advani, A. Prasad, J. Deitzel, Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating, Progress in Organic Coatings 79 (2015) 75-82. [18] G.M. Bayley, P.E. Mallon, Porous microfibers by the electrospinning of amphiphilic graft copolymer solutions with multi-walled carbon nanotubes, Polymer 53(24) (2012) 5523-5539. [19] A. Mostafa, H. Oudadesse, M. Mohamed, E. Foad, Y. Le Gal, G. Cathelineau, Convenient approach of nanohydroxyapatite polymeric matrix composites, Chemical Engineering Journal 153(1-3) (2009) 187-192. [20] C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, S. Sun, Au–Fe3O4 dumbbell nanoparticles as dual‐functional probes, Angewandte Chemie International Edition 47(1) (2008) 173-176. [21] S. Chen, A. Osaka, N. Hanagata, Collagen-templated sol–gel fabrication, microstructure, in vitro apatite deposition, and osteoblastic cell MC3T3-E1 compatibility of novel silica nanotube compacts, Journal of Materials Chemistry 21(12) (2011) 4332-4338. [22] A. Santamaria-Echart, L. Ugarte, C. García-Astrain, A. Arbelaiz, M.A. Corcuera, A. Eceiza, Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites, Carbohydrate polymers 151 (2016) 1203-1209. [23] C. García-Astrain, K. González, T. Gurrea, O. Guaresti, I. Algar, A. Eceiza, N. Gabilondo, Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels, Carbohydrate polymers 149 (2016) 94-101. [24] S. Kulikov, L. Bayazitova, O. Tyupkina, P. Zelenikhin, M. Salnikova, E. Bezrodnykh, V. Tikhonov, Evaluation of a method for the determination of antibacterial activity of chitosan, Applied biochemistry and microbiology 52(5) (2016) 502-507. [25] S.-h. Hsu, K.-C. Hung, Y.-Y. Lin, C.-H. Su, H.-Y. Yeh, U.-S. Jeng, C.-Y. Lu, S.A. Dai, W.-E. Fu, J.-C. Lin, Water-based synthesis and processing of novel biodegradable elastomers for medical applications, Journal of Materials Chemistry B 2(31) (2014) 5083-5092. [26] S.-h. Hsu, C.-T. Hsieh, Y.-M. Sun, Synthesis and characterization of waterborne polyurethane containing poly (3-hydroxybutyrate) as new biodegradable elastomers, Journal of Materials Chemistry B 3(47) (2015) 9089-9097. [27] G. Biesmans, A. Mertens, L. Duffours, T. Woignier, J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels, Journal of non-crystalline solids 225 (1998) 64-68. [28] S. Oprea, V.O. Potolinca, P. Gradinariu, A. Joga, V. Oprea, Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents, Cellulose 23(4) (2016) 2515-2526. [29] A. Ivdre, V. Mucci, P. Stefani, M. Aranguren, U. Cabulis, Nanocellulose reinforced polyurethane obtained from hydroxylated soybean oil, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016, p. 012011. [30] X. Kong, L. Zhao, J.M. Curtis, Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals, Carbohydrate polymers 152 (2016) 487-495. [31] A. Santamaria-Echart, L. Ugarte, A. Arbelaiz, N. Gabilondo, M.A. Corcuera, A. Eceiza, Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites, European Polymer Journal 76 (2016) 99-109. [32] S.-h. Hsu, C.-W. Chen, K.-C. Hung, Y.-C. Tsai, S. Li, Thermo-responsive polyurethane hydrogels based on poly (ε-caprolactone) diol and amphiphilic polylactide-poly (ethylene glycol) block copolymers, Polymers 8(7) (2016) 252. [33] G.-H. Wu, S.-h. Hsu, Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications, Colloids and Surfaces B: Biointerfaces 146 (2016) 825-832. [34] L. Lei, L. Zhong, X. Lin, Y. Li, Z. Xia, Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink, Chemical Engineering Journal 253 (2014) 518-525. [35] Y.-c. Chien, W.-T. Chuang, U.-S. Jeng, S.-h. Hsu, Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers, ACS applied materials & interfaces 9(6) (2017) 5419-5429. [36] S.-F. Zhang, R.-M. Wang, Y.-F. He, P.-F. Song, Z.-M. Wu, Waterborne polyurethane-acrylic copolymers crosslinked core–shell nanoparticles for humidity-sensitive coatings, Progress in Organic Coatings 76(4) (2013) 729-735. [37] C.-H. Chen, Y.-T. Kan, C.-F. Mao, W.-T. Liao, C.-D. Hsieh, Fabrication and characterization of water-based polyurethane/polyaniline conducting blend films, Surface and Coatings Technology 231 (2013) 71-76. [38] C.A. Heck, J.H.Z. dos Santos, C.R. Wolf, Waterborne polyurethane: the effect of the addition or in situ formation of silica on mechanical properties and adhesion, International Journal of Adhesion and Adhesives 58 (2015) 13-20. [39] Y.-P. Chen, S.-h. Hsu, Preparation and characterization of novel water-based biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drugs, Journal of Materials Chemistry B 2(21) (2014) 3391-3401. [40] T.-Y. Chi, H.-Y. Yeh, J.-J. Lin, U.-S. Jeng, S.-h. Hsu, Amphiphilic silver-delaminated clay nanohybrids and their composites with polyurethane: physico-chemical and biological evaluations, Journal of Materials Chemistry B 1(16) (2013) 2178-2189. [41] K.C. Hung, C.S. Tseng, S.h. Hsu, Synthesis and 3D printing of biodegradable polyurethane elastomer by a water‐based process for cartilage tissue engineering applications, Advanced healthcare materials 3(10) (2014) 1578-1587. [42] K.-C. Hung, C.-S. Tseng, L.-G. Dai, S.-h. Hsu, Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering, Biomaterials 83 (2016) 156-168. [43] B. Youssef, A. Soumia, C. Omar, L. Abdelaziz, Z. Mohamed, Preparation and properties of bionanocomposite films reinforced with nanocellulose isolated from Moroccan alfa fibres, Autex Research Journal 15(3) (2015) 164-172. [44] J. Juntaro, S. Ummartyotin, M. Sain, H. Manuspiya, Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties, Carbohydrate polymers 87(4) (2012) 2464-2469. [45] A. Kiziltas, B. Nazari, E.E. Kiziltas, D.J. Gardner, Y. Han, T.S. Rushing, Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system, Carbohydrate polymers 140 (2016) 393-399. [46] J. Yang, C.-R. Han, J.-F. Duan, F. Xu, R.-C. Sun, Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels, ACS applied materials & interfaces 5(8) (2013) 3199-3207. [47] C. Tian, S. Fu, Q. Meng, L.A. Lucia, New insights into the material chemistry of polycaprolactone-grafted cellulose nanofibrils/polyurethane nanocomposites, Cellulose 23(4) (2016) 2457-2473. [48] X. Zhou, J. Sethi, S. Geng, L. Berglund, N. Frisk, Y. Aitomäki, M.M. Sain, K. Oksman, Dispersion and reinforcing effect of carrot nanofibers on biopolyurethane foams, Materials & Design 110 (2016) 526-531. [49] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, K.-Y.A. Lin, Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP, Polymer 72 (2015) 395-405. [50] G.-m. Wu, G.-f. Liu, J. Chen, Z.-w. Kong, Preparation and properties of thermoset composite films from two-component waterborne polyurethane with low loading level nanofibrillated cellulose, Progress in Organic Coatings 106 (2017) 170-176. [51] M.L. Auad, V.S. Contos, S. Nutt, M.I. Aranguren, N.E. Marcovich, Characterization of nanocellulose‐reinforced shape memory polyurethanes, Polymer International 57(4) (2008) 651-659. [52] G. Siqueira, D. Kokkinis, R. Libanori, M.K. Hausmann, A.S. Gladman, A. Neels, P. Tingaut, T. Zimmermann, J.A. Lewis, A.R. Studart, Cellulose nanocrystal inks for 3D printing of textured cellular architectures, Advanced Functional Materials 27(12) (2017) 1604619. [53] C.A. Murphy, M.N. Collins, Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing, Polymer Composites 39(4) (2018) 1311-1320. [54] K. Markstedt, A. Mantas, I. Tournier, H.c. Martínez Ávila, D. Hägg, P. Gatenholm, 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications, Biomacromolecules 16(5) (2015) 1489-1496. [55] N.B. Palaganas, J.D. Mangadlao, A.C.C. de Leon, J.O. Palaganas, K.D. Pangilinan, Y.J. Lee, R.C. Advincula, 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography, ACS applied materials & interfaces 9(39) (2017) 34314-34324. [56] S. Shin, S. Park, M. Park, E. Jeong, K. Na, H.J. Youn, J. Hyun, Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives, BioResources 12(2) (2017) 2941-2954. [57] Y.-J. Wang, U.-S. Jeng, S.-h. Hsu, Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering, ACS Biomaterials Science & Engineering 4(4) (2018) 1397-1406. [58] D. Roy, J.T. Guthrie, S. Perrier, Graft polymerization: Grafting poly (styrene) from cellulose via reversible addition− fragmentation chain transfer (RAFT) polymerization, Macromolecules 38(25) (2005) 10363-10372. [59] J. Yi, Q. Xu, X. Zhang, H. Zhang, Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states, Polymer 49(20) (2008) 4406-4412. [60] Y.S. Song, J.R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon 43(7) (2005) 1378-1385. [61] K. Benhamou, H. Kaddami, A. Magnin, A. Dufresne, A. Ahmad, Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface, Carbohydrate polymers 122 (2015) 202-211. [62] S. Bhattacharjee, DLS and zeta potential–What they are and what they are not?, Journal of Controlled Release 235 (2016) 337-351. [63] G. Mondragon, A. Santamaria-Echart, M. Hormaiztegui, A. Arbelaiz, C. Peña-Rodriguez, V. Mucci, M. Corcuera, M. Aranguren, A. Eceiza, Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals from sisal fibres, Journal of Polymers and the Environment 26(5) (2018) 1869-1880. [64] G.-m. Wu, J. Chen, S.-p. Huo, G.-f. Liu, Z.-w. Kong, Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers, Carbohydrate polymers 105 (2014) 207-213. [65] Y. Zhu, J. Hu, H. Luo, R.J. Young, L. Deng, S. Zhang, Y. Fan, G. Ye, Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites, Soft Matter 8(8) (2012) 2509-2517. [66] M. Lee, M.H. Heo, H.-H. Lee, Y.-W. Kim, J. Shin, Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites, Carbohydrate polymers 159 (2017) 125-135. [67] T. Wu, M. Frydrych, K. O’Kelly, B. Chen, Poly (glycerol sebacate urethane)–cellulose nanocomposites with water-active shape-memory effects, Biomacromolecules 15(7) (2014) 2663-2671. [68] M. Jonoobi, J. Harun, A.P. Mathew, K. Oksman, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Composites Science and Technology 70(12) (2010) 1742-1747. [69] M.M. Ruiz, J.Y. Cavaillé, A. Dufresne, C. Graillat, J.F. Gérard, New waterborne epoxy coatings based on cellulose nanofillers, Macromolecular Symposia, Wiley Online Library, 2001, pp. 211-222. [70] F. Qu, J.L. Holloway, J.L. Esterhai, J.A. Burdick, R.L. Mauck, Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair, Nature communications 8(1) (2017) 1780. [71] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-5491. [72] F.-L. He, D.-W. Li, J. He, Y.-Y. Liu, F. Ahmad, Y.-L. Liu, X. Deng, Y.-J. Ye, D.-C. Yin, A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning, Materials Science and Engineering: C 86 (2018) 18-27.
|