跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴柏宇
研究生(外文):Bo-Yu Lai
論文名稱:鋰硫電池材料開發與電化學分析-PVDF膠體電解質對枝晶生成及碳保護層對硫電極之影響
論文名稱(外文):Lithium Sulfur Battery Materials Development and Electrochemical Analysis – Effects of PVDF Based Gel Polymer Electrolyte on Dendrite Formation and Carbon Based Protection Layer on Lithium Sulfur Electrodes
指導教授:陳洵毅
指導教授(外文):Hsun-Yi Chen
口試委員:侯嘉洪郭彥廷
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:鋰金屬電池鋰硫電池枝晶固態電解質木質素
外文關鍵詞:lithium metallithium sulfur batterydendritegel polymer electrolytelignin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對目前發展中的鋰金屬電池之中極具潛力的鋰硫電池,解決目前研究遇到的困難,並且改進電池性能與壽命,主要從兩個面向切入,其一為陽極,鋰金屬電極的部分,在長時間充放電容易形成枝晶,我們利用具有機械強度的固態電解質置入對稱鋰金屬電池,分析不同硬度對於枝晶生成型態與速度的影響,我們發現楊氏模量0.05548MPa的電解質在0.1mA/cm2電流密度時,在前3000分鐘可以完全抑制枝晶的生長,並且促進電極表面愈趨平整。在實時觀察實驗中,我們發現在陽極側,電極氧化的情形十分類似腐蝕理論中的孔蝕現象,也發現隨著電解質的擴散係數變小,孔蝕現象也變得較不明顯。

鋰硫電池的陰極因為其特性,在電池使用過程中容易溶解出鋰硫化物,我們模仿Su等人使用奈米碳管製作陰極的保護層,並且使用自製碳化過的木質素做為與奈米碳管混和的替代品,結果發現使用50% 900℃碳化過的木質素製作的奈米碳管保護膜可以讓鋰硫電池的循環效率大幅提升,在60次0.1C循環充放電後保持有近1000mAh/g S的電容量。


This research is dedicating to one of the most promising lithium metal battery, lithium sulfur battery. The development of this kind of lithium metal battery is facing some challenges recently, which can split to two parts. One of them is dendrite growth on the lithium metal negative electrode, which may cause some safety issue, including short-circuited and energy capacity decay. We designed a symmetric cell to in-situ observe dendrite growth when applying a constant current. In order to study the relationship between mechanical strength and dendrite growth, we fabricated the cell with different gel polymer electrolyte with different Young’s modulus. We found that when using the gel polymer electrolyte which Young’s modulus is 0.05548MPa and the current density is 0.1mA/cm2, dendrite would not grow in the first 3000 minutes. We also found that the mechanism of oxidation of lithium metal is very similar to pitting corrosion. When using the electrolyte which diffusivity is lower, the phenomena of pitting corrosion is less apparent.

The other part is the dissolution of sulfur electrode. Due to its physic properties, the lithium sulfide would gradually dissolve into the electrolyte. This may cause some energy capacity decay. We add an additional layer into the cell to be a protect layer. This layer could efficiently adsorb the lithium sulfide that dissolved into the solution, reducing the decay rate of the cell. We also mixed MWCNT with carbonized lignin, and found that 50% 900℃ carbonized lignin MWCNT film could make the cell remain 1000mAh/g S capacity after 60 cycles(0.1C).


第一章 研究目的 1
1.1 負極材料 2
1.2 正極材料 2
第二章 文獻探討 3
2.1 沿革 3
2.2 特性 4
2.3 發展窒礙 5
2.3.1 負極鋰金屬電極枝晶生長 5
2.3.1.1 鋰枝晶生長模型 5
2.3.2 正極硫電極 12
2.3.2. 導電度 12
2.3.2.2 硫電極膨脹 12
2.3.2.3 Shuttle Effect 13
2.3.2.4 自放電現象 15
2.4 改進方法 16
2.4.1 固態電解質(gel polymer electrolyte)(GPE) 16
2.4.1.1 Deki & Periasamy團隊 17
2.4.1.2 Arof & Mohamed團隊 19
2.4.1.3 Kumar & Guan團隊 20
2.4.2 電解液 21
2.4.3 硫電極 22
2.4.3.1 Sulfur-Carbon composites 22
2.4.3.2 Sulfur-Conductive polymer composites 23
2.4.4 充放電策略 24
2.4.5 三明治結構 25
第三章 研究方法 26
3.1 固態電解質對負極鋰枝晶之影響 26
3.1.1 實驗設計 26
3.1.2 電池殼設計 27
3.1.3 固態電解質的製備 28
3.1.3.1 製備流程 28
3.1.3.2 製作配方 29
3.1.4 電池組裝 29
3.1.5 實驗方法 31
3.1.5.1 定電流測量 (constant current method) 31
3.1.5.2 Impedance測量 31
3.1.5.3 VHX顯微鏡長時間觀察記錄 32
3.1.5.4 Diffusivity measurement 32
3.1.5.5 Transference number measurement 33
3.1.5.6 XPS (X-ray photoelectron spectroscopy) 34
3.1.5.7 FTIR(Fourier transform infrared spectroscopy) 35
3.1.5.8 真空乾燥 36
3.2 木質素與奈米碳管保護層對鋰硫電池效率影響 36
3.2.1 實驗設計 36
3.2.2 電極製作 37
3.2.3 電池組裝 37
3.2.4 實驗變因 38
3.2.5 MWCNT膜製作 39
3.2.6 木質素碳化 40
3.3 實驗藥品 41
3.4 實驗儀器 44
3.4.1 手套箱 44
3.4.2 電化學工作站 Autolab 45
3.4.3 VHX顯微鏡 45
3.4.4 萬能拉伸試驗機 46
3.4.5 攪拌加熱台(stirring hot plate) 47
第四章 結果與討論 47
4.1 固態電解質對負極鋰枝晶之影響 47
4.1.1 固態電解質 48
4.1.1.1 外觀 48
4.1.1.2 impedance 48
4.1.1.3 楊氏模量 50
4.1.1.4 diffusivity測量 52
4.1.1.5 transference number測量 56
4.1.1.6 XPS與FTIR 61
4.1.2 定電流放電與枝晶觀察 67
4.1.3 綜合分析 78
4.2.1 循環伏安法 (cyclic voltammetry) 82
4.2.2 阻抗 (FRA impedance method) 86
4.2.3 長時間循環 (long cycle) 88
4.2.4 數位顯微鏡與電子顯微鏡 (VHX & SEM) 92
4.2.5 BET 97
4.2.6 討論 98
第五章 總結 100
第六章 參考文獻 103


1.Danuta, H.; Juliusz, U., Electric dry cells and storage batteries. Google Patents: 1962.
2.Bhaskara, R. M. L., Organic electrolyte cells. Google Patents: 1968.
3.Yamin, H.; Peled, E. Journal of Power Sources 1983, 9, (3), 281-287.
4.Peled, E.; Sternberg, Y.; Gorenshtein, A.; Lavi, Y. J. Electrochem. Soc. 1989, 136, (6), 1621-1625.
5.Peled, E.; Gorenshtein, A.; Segal, M.; Sternberg, Y. Journal of Power Sources 1989, 26, (3–4), 269-271.
6.Rauh, R. D.; Abraham, K. M.; Pearson, G. F.; Surprenant, J. K.; Brummer, S. B. J. Electrochem. Soc. 1979, 126, (4), 523-527.
7.Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Chemical Reviews 2014.
8.Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. J. Electrochem. Soc. 2009, 156, (8), A694-A702.
9.維基百科編者 鋰離子電池. http://zh.wikipedia.org/w/index.php?title=%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0&oldid=35791126 (2015-05-26UTC09:25:40+00:00 (UTC)),
10.Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat Mater 2012, 11, (1), 19-29.
11.Sawada, Y.; Dougherty, A.; Gollub, J. P. Phys. Rev. Lett. 1986, 56, (12), 1260-1263.
12.Voss, R. F.; Tomkiewicz, M. J. Electrochem. Soc. 1985, 132, (2), 371-375.
13.Shraiman, B.; Bensimon, D. Physical Review A 1984, 30, (5), 2840-2842.
14.Chazalviel, J. N. Physical Review A 1990, 42, (12), 7355-7367.
15.Chen, C. P.; Jorné, J. J. Electrochem. Soc. 1990, 137, (7), 2047-2051.
16.Barton, J. L.; Bockris, J. O. M. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1962, 268, (1335), 485-505.
17.Deutscher, R. L.; Fletcher, S. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 164, (1), 1-9.
18.Monroe, C.; Newman, J. J. Electrochem. Soc. 2003, 150, (10), A1377-A1384.
19.Monroe, C.; Newman, J. J. Electrochem. Soc. 2004, 151, (6), A880-A886.
20.He, X.; Ren, J.; Wang, L.; Pu, W.; Jiang, C.; Wan, C. Journal of Power Sources 2009, 190, (1), 154-156.
21.Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, (11), A1969-A1976.
22.Zhang, S. S. Journal of Power Sources 2013, 231, (0), 153-162.
23.Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14, (11), 589.
24.Yu, V. B.; Ol''ga, V. Y.; Oleg, N. E. Russian Chemical Reviews 2012, 81, (4), 367.
25.Shi, Q.; Yu, M.; Zhou, X.; Yan, Y.; Wan, C. Journal of Power Sources 2002, 103, (2), 286-292.
26.Periasamy, P.; Tatsumi, K.; Shikano, M.; Fujieda, T.; Saito, Y.; Sakai, T.; Mizuhata, M.; Kajinami, A.; Deki, S. Journal of Power Sources 2000, 88, (2), 269-273.
27.Mohamed, N. S.; Arof, A. K. Journal of Power Sources 2004, 132, (1–2), 229-234.
28.Guan, H.-y.; Lian, F.; Xi, K.; Ren, Y.; Sun, J.-l.; Kumar, R. V. Journal of Power Sources 2014, 245, (0), 95-100.
29.Lin, Z.; Li, G.; Li, Z.; Zhang, B. Frontiers in Energy Research 2015, 3.
30.Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Anal. Chem. 2012, 84, (9), 3973-3980.
31.Aurbach, D.; Youngman, O.; Dan, P. Electrochimica Acta 1990, 35, (3), 639-655.
32.Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Journal of Power Sources 1997, 68, (2), 320-325.
33.Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X.; Li, Y. Electrochemistry Communications 2002, 4, (6), 499-502.
34.Wang, J.; Yang, J.; Xie, J.; Xu, N. Advanced Materials 2002, 14, (13-14), 963-965.
35.Su, Y.-S.; Fu, Y.; Cochell, T.; Manthiram, A. Nat Commun 2013, 4.
36.Su, Y.-S.; Manthiram, A. Chemical Communications 2012, 48, (70), 8817-8819.
37.Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Electrochimica Acta 2009, 54, (20), 4631-4637.
38.Wen, C. J.; Boukamp, B. A.; Huggins, R. A.; Weppner, W. J. Electrochem. Soc. 1979, 126, (12), 2258-2266.
39.Zhu, Y.; Wang, C. The Journal of Physical Chemistry C 2010, 114, (6), 2830-2841.
40.Bruce, P. G.; Vincent, C. A. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1987, 225, (1–2), 1-17.
41.Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, (13), 2324-2328.
42.Wikipedia contributors Lignin. http://en.wikipedia.org/w/index.php?title=Lignin&oldid=662879282 (1 June 2015 11:45 UTC),
43.Chao, S.-C.; Yen, Y.-C.; Song, Y.-F.; Sheu, H.-S.; Wu, H.-C.; Wu, N.-L. J. Electrochem. Soc. 2011, 158, (12), A1335-A1339.
44.Nazri, G.; Muller, R. H. J. Electrochem. Soc. 1985, 132, (9), 2050-2054.
45.Nazri, G.; Muller, R. H. J. Electrochem. Soc. 1985, 132, (6), 1385-1387.
46.Cohen, Y. S.; Cohen, Y.; Aurbach, D. The Journal of Physical Chemistry B 2000, 104, (51), 12282-12291.
47.Wikipedia contributors Pitting corrosion. http://en.wikipedia.org/w/index.php?title=Pitting_corrosion&oldid=663422461 (8 June 2015 06:28 UTC),
48.Sand, H. J. S. Philosophical Magazine Series 6 1901, 1, (1), 45-79.
49.Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Electrochem. Soc. 1999, 146, (12), 4393-4400.
50.Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. Electrochimica Acta 1998, 43, (10–11), 1569-1574.
51.Teyssot, A.; Belhomme, C.; Bouchet, R.; Rosso, M.; Lascaud, S.; Armand, M. J. Electroanal. Chem. 2005, 584, (1), 70-74.
52.Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J. N.; Lascaud, S. Journal of Power Sources 2001, 97–98, (0), 804-806.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top