跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂政憲
研究生(外文):Lu, Cheng-Hsien
論文名稱:低熱預算聚醯亞胺於三維整合平台之非對稱銅錫混合接合應用及其材料特性分析
論文名稱(外文):Application and Material Properties of Low Thermal Budget Polyimide in Asymmetric Cu/Sn Hybrid Bonding in 3D Integration Platform
指導教授:陳冠能
指導教授(外文):Chen, Kuan-Neng
口試委員:鄭晃忠
口試委員(外文):Cheng, Huang-Chung
口試日期:2019-06-27
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:100
中文關鍵詞:混和接合聚醯亞胺附著力非對稱晶圓級
外文關鍵詞:Hybrid bondingPolyimideAdhesionAsymmetricWafer-level
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混和接合技術為三維積體電路關鍵技術之一,其具有高材料選擇性與高半導體製程相容性,可實現晶片異質封裝並達到低功率、小尺寸與更多功能的整合產品。因此,此技術在產業界與學術界皆是相當重視的封裝技術,目前正朝著低熱預算與細間距的需求邁進。
在混和接合技術中,高分子與金屬需於接合過程中分別完成接合。傳統的聚醯亞胺材料因其高熟化溫度與高熱預算,較少廣泛應用於接合技術中,本論文提出一低熟化溫度之聚醯亞胺,搭配銅/錫共晶接合,可於250°C下完成非對稱晶圓級混和接合。非對稱結構不僅可有效優化金屬與高分子的製程,並且可實現超薄之薄膜接合技術。此外,在本研究中設計不同的聚醯亞胺材料對焊錫厚度比例,以研究製程的適用範圍。在不同的厚度比下,其特徵接觸阻值皆落在10-7~10-8 Ω-cm2,並通過熱循環與高濕度之可靠度測試。綜合上述結果,此非對稱性混合接合結構於未來之三維異質整合技術之應用極俱潛力。
除混合接合製程與其電性外,本論文亦針對聚醯亞胺材料與半導體製程相容性以及材料之間附著強度進行研究。在線路重佈技術中,聚醯亞胺將沉積於鈍化層之上,因此聚醯亞胺與鈍化層之間的附著強度與溫度可靠度相當重要。此外,將使用鈦/銅金屬作為金屬連線並沉積於聚醯亞胺之上,因此亦由四點彎曲量測系統,針對聚醯亞胺對於鈦/銅金屬與其電鍍製程的附著強度進行研究。而材料分析部分,透過原子力顯微鏡、接觸角量測系統與X射線光電子能譜儀針對接著介面進行更深入的討論與分析。
Hybrid bonding technology is one of the key technologies of 3D integrated circuits (3D IC). It has high material selectivity and high semiconductor process compatibility, enabling heterogeneous integration and achieving of lower power, smaller size and more functional products. Therefore, this technology is highly valued in both industry and academia, and is currently moving toward low thermal budget and fine pitch requirements.
In hybrid bonding techniques, the polymer and metal need to be bonded during the bonding process, respectively. Conventional polyimides are less used in bonding technology due to their high curing temperature and high thermal budget. This thesis proposes a low curing temperature polyimide that can be combined with Cu/Sn eutectic bonding to achieve asymmetric wafer-level hybrid bonding at 250°C. The asymmetric structure can not only effectively optimize the processing of metals and polymers, but also achieve ultra-thin film bonding. In addition, the ratio of polymer-to-solder thickness was designed to study the applicability of the process. At different thickness ratios, the specific contact resistance value maintained at 10-7~10-8 Ω-cm2, and the thermal cycling tests and humidity reliability tests showed good electrical performance. Therefore, this asymmetric hybrid bonding structure has great potential for future 3D integration technologies.
In addition to the hybrid bonding structure and its electrical properties, the compatibility of polyimide materials with semiconductor fabrication process and the adhesion strength of between the materials were investigated. Since the polyimide layer is deposited on the passivation layer in the redistribution layer (RDL), the adhesion strength and thermal reliability between the polyimide layer and the passivation layer are very important. Moreover, the Ti/Cu metal wires were deposited on the polyimide layer. Therefore, the adhesion strength between polyimide layer and Ti/Cu layer after certain electroplating process were also evaluated by the four-point bending system. By using scanning electron microscope and X-ray photoelectron spectroscopy, the bonding mechanism and behavior were observed and analyzed.
Table of Contents
摘 要 i
Abstract iii
誌 謝 v
Chapter 1 Introduction 1
1.1 General Background 1
1.2 Hybrid Bonding Technology 3
1.3 Motivation 4
1.4 Organization of The Thesis 4
Chapter 2 Adhesion between the Polyimide Layer and the Passivation Layer 11
2.1 Introduction 11
2.2 Material Selection 12
2.3 Process Flow 14
2.4 Four-Point Bending System 15
2.5 Contact Angle Measurement 17
2.6 Effect of Silane on Adhesion Strength 18
2.7 Influence of Surface Roughness on Adhesion 18
2.8 XPS Analysis of Passivation Layer 19
2.9 Summary 22
Chapter 3 Effect of Electroplating Current and Electroplating Solution on Adhesion of Polyimide and Ti/Cu Seed Layer 35
3.1 Introduction 35
3.2 Process Flow 36
3.3 Adhesion Strength and SEM Image of Electroplating 37
3.4 Effect of Electroplating Current and Electroplating Solution 38
3.5 XPS Analysis of Electroplating 39
3.6 Summary 41
Chapter 4 Asymmetric Wafer-level PI/CuSn Hybrid Bonding Structure 51
4.1 Introduction 51
4.2 Material Selection 52
4.3 Process Flow 54
4.4 Polymer-to-Solder Thickness Ratio 55
4.5 Results and Discussions 56
4.5.1 SAT image 56
4.5.2 SEM Cross-Sectional View 57
4.5.3 FIB Image and EDX Analysis 58
4.5.4 Pulling Force Test 58
4.6 Electrical Performance and Reliability Results 59
4.6.1 Electrical Performance 59
4.6.2 Reliability Results 61
4.7 Summary 63
Chapter 5 Conclusion and Future Work 83
5.1 Conclusion 83
5.2 Future Works 85
Reference 88
簡歷(Vita) 100
Reference
[1] G. E. Moore, "Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff," IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, 2006.
[2] S. Shankland. (2012). Moore's Law: The rule that really matters in tech. Available: https://www.cnet.com/news/moores-law-the-rule-that-really-matters-in-tech/
[3] L. Clavelier, C. Deguet, L. D. Cioccio, E. Augendre, A. Brugere, P. Gueguen, Y. L. Tiec, H. Moriceau, M. Rabarot, T. Signamarcheix, J. Widiez, O. Faynot, F. Andrieu, O. Weber, C. L. Royer, P. Batude, L. Hutin, J. Damlencourt, S. Deleonibus, and E. Defaÿ, "Engineered substrates for future More Moore and More than Moore integrated devices," in 2010 International Electron Devices Meeting, 2010, pp. 2.6.1-2.6.4.
[4] K. Ahmed and K. Schuegraf, "Transistor wars," IEEE Spectrum, vol. 48, no. 11, pp. 50-66, 2011.
[5] C. C. Liu, S.-M. Chen, F.-W. Kuo, H.-N. Chen, E.-H. Yeh, C.-C. Hsieh, L.-H. Huang, M.-Y. Chiu, J. Yeh, and T.-S. Lin, "High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration," in 2012 International Electron Devices Meeting (IEDM), Calif. , CA, USA, 2012, pp. 14.1.1-14.1.4.
[6] C.-F. Tseng, C.-S. Liu, C.-H. Wu, and D. Yu, "InFO (wafer level integrated fan-out) technology," in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016, pp. 1-6.
[7] P.-T. Huang, S.-L. Wu, Y.-C. Huang, L.-C. Chou, T.-C. Huang, T.-H. Wang, Y.-R. Lin, C.-A. Cheng, W.-W. Shen, C.-T. Chuang, K.-N. Chen, J.-C. Chiou, W. Hwang, and H.-M. Tong, "2.5D Heterogeneously Integrated Microsystem for High-Density Neural Sensing Applications," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 6, pp. 810-823, 2014.
[8] Y.-C. Hu, Y.-C. Huang, P.-T. Huang, S.-L. Wu, H.-C. Chang, Y.-T. Yang, Y.-H. You, J.-M. Chen, Y.-Y. Huang, Y.-H. Lin, J. R. Duann, T.-W. Chiu, W. Hwang, C.-T. Chuang, J.-C. Chiou, and K.-N. Chen, "An Advanced 2.5-D Heterogeneous Integration Packaging for High-Density Neural Sensing Microsystem," IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1666-1673, 2017.
[9] C.-T. Ko and K.-N. Chen, "Wafer-level bonding/stacking technology for 3D integration," Microelectronics Reliability, vol. 50, no. 4, pp. 481-488, 2010.
[10] M. Koyanagi, T. Nakamura, Y. Yamada, H. Kikuchi, T. Fukushima, T. Tanaka, and H. Kurino, "Three-Dimensional Integration Technology Based on Wafer Bonding With Vertical Buried Interconnections," IEEE Transactions on Electron Devices, vol. 53, no. 11, pp. 2799-2808, 2006.
[11] S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K. Chen, D. C. L. Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, "Wafer-level 3D integration technology," IBM Journal of Research and Development, vol. 52, no. 6, pp. 583-597, 2008.
[12] J. Wang, Q. Wang, Z. Wu, D. Wang, and J. Cai, "Solid-State-Diffusion Bonding for Wafer-Level Fine-Pitch Cu/Sn/Cu Interconnect in 3-D Integration," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 1, pp. 19-26, 2017.
[13] A. W. Topol, B. K. Furman, K. W. Guarini, L. Shi, G. M. Cohen, and G. F. Walker, "Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures," in 2004 Proceedings. 54th Electronic Components and Technology Conference Las Vegas, NV, USA, 2004, vol. 1, pp. 931-938.
[14] R. Reif, A. Fan, K.-N. Chen, and S. Das, "Fabrication technologies for three-dimensional integrated circuits," in Proceedings International Symposium on Quality Electronic Design, San Jose, CA, USA, 2002, pp. 33-37.
[15] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, "Demystifying 3D ICs: the pros and cons of going vertical," IEEE Design & Test of Computers, vol. 22, no. 6, pp. 498-510, 2005.
[16] P. Ramm, A. Klumpp, J. Weber, N. Lietaer, M. Taklo, W. D. Raedt, T. Fritzsch, and P. Couderc, "3D Integration technology: Status and application development," in 2010 Proceedings of ESSCIRC, 2010, pp. 9-16.
[17] K.-N. Chen and C.-S. Tan, "Integration schemes and enabling technologies for three-dimensional integrated circuits," IET Computers & Digital Techniques, vol. 5, no. 3, pp. 160-168, 2011.
[18] M.-F. Lai, S.-W. Li, J.-Y. Shih, and K.-N. Chen, "Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies," Microelectronic Engineering, vol. 88, no. 11, pp. 3282-3286, 2011.
[19] J. Fan and C.-S. Tan, "Low temperature wafer-level metal thermo-compression bonding technology for 3D integration," in Metallurgy-Advances in Materials and Processes: IntechOpen, 2012.
[20] P. Garrou and C. Bower, "Overview of 3D integration process technology," Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits, pp. 25-44, 2008.
[21] J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, "An overview of through-silicon-via technology and manufacturing challenges," Microelectronic Engineering, vol. 135, pp. 73-106, 2015.
[22] L. Dumas, S. Verrier, A. Achen, J. Hetzner, M. Proust, C. Rossato, C. Richard, P. Caubet, T. Jagueneau, and C. Fellous, "Electromigration and adhesion improvements of Thick Cu/BCB architecture in BiCMOS RF technology," WSEAS Transactions on Electronics, vol. 3, no. 4, p. 245, 2006.
[23] S.-Y. Hsu, J.-Y. Shih, and K.-N. Chen, "Diffusion behavior and mechanism of co-sputtering metals as bonding materials for 3D IC interconnects during annealing treatment," in The 4th IEEE International NanoElectronics Conference, 2011, pp. 1-2: IEEE.
[24] K.-N. Chen, A. Fan, C.-S. Tan, and R. Reif, "Contact resistance measurement of bonded copper interconnects for three-dimensional integration technology," IEEE Electron Device Letters, vol. 25, no. 1, pp. 10-12, 2004.
[25] J. H. Lau, "Evolution and outlook of TSV and 3D IC/Si integration," in 2010 12th Electronics Packaging Technology Conference, Singapore, 2010, pp. 560-570.
[26] G. Kumar, T. Bandyopadhyay, V. Sukumaran, V. Sundaram, S. K. Lim, and R. Tummala, "Ultra-high I/O density glass/silicon interposers for high bandwidth smart mobile applications," in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 2011, pp. 217-223.
[27] M. Aoki, F. Furuta, K. Hozawa, Y. Hanaoka, H. Kikuchi, A. Yanagisawa, T. Mitsuhashi, and K. Takeda, "Fabricating 3D integrated CMOS devices by using wafer stacking and via-last TSV technologies," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 29.5.1-29.5.4.
[28] K.-N. Chen, Z. Xu, and J.-Q. Lu, "Demonstration and Electrical Performance Investigation of Wafer-Level Cu Oxide Hybrid Bonding Schemes," IEEE Electron Device Letters, vol. 32, no. 8, pp. 1119-1121, 2011.
[29] M. Aoki, K. Hozawa, and K. Takeda, "Wafer-level hybrid bonding technology with copper/polymer co-planarization," in 2010 IEEE International 3D Systems Integration Conference (3DIC), Munich, Germany, 2010, pp. 1-4.
[30] F. Liu, R. R. Yu, A. M. Young, J. P. Doyle, X. Wang, L. Shi, K. Chen, X. Li, D. A. Dipaola, D. Brown, C. T. Ryan, J. A. Hagan, K. H. Wong, M. Lu, X. Gu, N. R. Klymko, E. D. Perfecto, A. G. Merryman, K. A. Kelly, S. Purushothaman, S. J. Koester, R. Wisnieff, and W. Haensch, "A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
[31] S. Vaehaenen. Emerging fine-pitch bump bonding techniques. Available: https://slideplayer.com/slide/6069665/
[32] A. Jourdain, S. Stoukatch, P. D. Moor, W. Ruythooren, S. Pargfrieder, B. Swinnen, and E. Beyne, "Simultaneous Cu-Cu and Compliant Dielectric Bonding for 3D Stacking of ICs," in 2007 IEEE International Interconnect Technology Conferencee, Burlingame, CA, USA, 2007, pp. 207-209.
[33] A. Jourdain, P. Soussan, B. Swinnen, and E. Beyne, "Electrically yielding Collective Hybrid Bonding for 3D stacking of ICs," in 2009 59th Electronic Components and Technology Conference, San Diego, CA, USA, 2009, pp. 11-13.
[34] C.-T. Ko, Z.-C. Hsiao, Y.-J. Chang, P.-S. Chen, Y.-J. Hwang, H.-C. Fu, J.-H. Huang, C.-W. Chiang, S.-S. Sheu, Y.-H. Chen, W.-C. Lo, and K.-N. Chen, "A Wafer-Level Three-Dimensional Integration Scheme With Cu TSVs Based on Microbump/Adhesive Hybrid Bonding for Three-Dimensional Memory Application," IEEE Transactions on Device and Materials Reliability, vol. 12, no. 2, pp. 209-216, 2012.
[35] D. E. Packham, "Work of adhesion: contact angles and contact mechanics," International Journal of Adhesion and Adhesives, vol. 16, no. 2, pp. 121-128, 1996.
[36] Work of adhesion. Available: https://www.kruss-scientific.com/services/education-theory/glossary/work-of-adhesion/
[37] K. Johnson, "Mechanics of adhesion," Tribology International, vol. 31, no. 8, pp. 413-418, 1998.
[38] V. Gupta, R. Hernandez, and P. Charconnet, "Effect of humidity and temperature on the tensile strength of polyimide/silicon nitride interface and its implications for electronic device reliability," Materials Science and Engineering: A, vol. 317, no. 1-2, pp. 249-256, 2001.
[39] R. G. Narechania, J. A. Bruce, and S. A. Fridmann, "Polyimide Adhesion Mechanical and Surface Analytical Characterization," Journal of The Electrochemical Society, vol. 132, no. 11, pp. 2700-2705, 1985.
[40] M. Ghosh, Polyimides: fundamentals and applications. CRC press, 1996.
[41] C. A. Arnold, J. D. Summers, Y. P. Chen, R. H. Bott, D. Chen, and J. E. McGrath, "Structure-property behaviour of soluble polyimide-polydimethylsiloxane segmented copolymers," Polymer, vol. 30, no. 6, pp. 986-995, 1989.
[42] Silane Coupling Agents. Available: https://www.shinetsusilicone-global.com/catalog/pdf/SilaneCouplingAgents_e.pdf
[43] New Products Guide. Available: https://www.shinetsusilicone-global.com/catalog/pdf/NewProductsGuide_E.pdf
[44] P. G. Pape, "Adhesion Promoters: Silane Coupling Agents," in Applied Plastics Engineering Handbook (Second Edition), M. Kutz, Ed. 2nd ed.: William Andrew, 2017, pp. 555-572.
[45] M. Vogt and K. Drescher, "Barrier behaviour of plasma deposited silicon oxide and nitride against Cu diffusion," Applied surface science, vol. 91, no. 1-4, pp. 303-307, 1995.
[46] R. Keller, S. Baker, and E. Arzt, "Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation," Journal of Materials Research, vol. 13, no. 5, pp. 1307-1317, 1998.
[47] X-ray Photoelectron Spectroscopy (XPS) Reference Pages. Available: http://www.xpsfitting.com/
[48] XPS Reference Table Of Elements. Available: https://xpssimplified.com/periodictable.php
[49] CasaXPS: Processing Software for XPS, AES, SIMS and More. Available: http://www.casaxps.com/
[50] BMI-3000 GEL [Online]. Available: http://dmi.dealers-websites.com/FTP/Technical%20Data%20Sheets/BMI-3000%20(R1090)%20-%20%20Imide%20Extended%20BMI.pdf
[51] J.-Y. Sun, D.-H. Hong, K.-O. Ahn, S.-H. Park, J.-Y. Park, and Y.-H. Kim, "Adhesion study between electroless seed layers and build-up dielectric film substrates," Journal of The Electrochemical Society, vol. 160, no. 3, pp. D107-D110, 2013.
[52] S. Kisin, P. T. Van der Varst, and G. de With, "Adhesion and adhesion changes at the copper metal–(acrylonitrile–butadiene–styrene) polymer interface," Thin Solid Films, vol. 515, no. 17, pp. 6853-6859, 2007.
[53] K.-W. Lee and A. Viehbeck, "Wet-process surface modification of dielectric polymers: Adhesion enhancement and metallization," IBM journal of research and development, vol. 38, no. 4, pp. 457-474, 1994.
[54] Y.-H. Kim, G. Walker, J. Kim, and J. Park, "Adhesion and interface studies between copper and polyimide," Journal of Adhesion Science and Technology, vol. 1, no. 1, pp. 331-339, 1987.
[55] L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, "Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements," Electrochimica acta, vol. 47, no. 26, pp. 4139-4148, 2002.
[56] S. B. Basame and H. S. White, "Pitting corrosion of titanium the relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface," Journal of the Electrochemical Society, vol. 147, no. 4, pp. 1376-1381, 2000.
[57] H. Saffarian, Q. Gan, R. Hadkar, and G. Warren, "Corrosion behavior of binary titanium aluminide intermetallics," Corrosion, vol. 52, no. 8, pp. 626-633, 1996.
[58] M. Yao, N. Zhao, T. Wang, D. Yu, Z. Xiao, and H. Ma, "Optimization and Characterization of Low-Temperature Wafer-Level Hybrid Bonding Using Photopatternable Dry Film Adhesive and Symmetric Micro Cu Pillar Solder Bumps," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 10, pp. 1855-1862, 2018.
[59] M. Ohyama, M. Nimura, J. Mizuno, S. Shoji, M. Tamura, T. Enomoto, and A. Shigetou, "Hybrid bonding of Cu/Sn microbump and adhesive with silica filler for 3D interconnection of single micron pitch," in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015, pp. 325-330.
[60] R. He, M. Fujino, M. Akaike, T. Sakai, S. Sakuyama, and T. Suga, "Combined surface activated bonding using H-containing HCOOH vapor treatment for Cu/Adhesive hybrid bonding at below 200°C," Applied Surface Science, vol. 414, pp. 163-170, 2017.
[61] Z.-C. Hsiao, C.-T. Ko, H.-H. Chang, H.-C. Fu, C.-W. Chiang, C.-K. Hsu, W.-W. Shen, and W.-C. Lo, "Cu/BCB hybrid bonding with TSV for 3D integration by using fly cutting technology," in 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, Japan, 2015, pp. 834-837.
[62] Y.-S. Tang, H.-C. Chen, Y.-T. Kho, Y.-S. Hsieh, Y.-J. Chang, and K.-N. Chen, "Investigation and Optimization of Ultrathin Buffer Layers Used in Cu/Sn Eutectic Bonding," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 7, pp. 1225-1230, 2018.
[63] Y.-J. Chang, Y.-S. Hsieh, and K.-N. Chen, "Submicron Cu/Sn Bonding Technology With Transient Ni Diffusion Buffer Layer for 3DIC Application," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1118-1120, 2014.
[64] H.-C. Chen, Y.-T. Kho, Y.-J. Huang, Y.-S. Hsieh, Y.-J. Chang, Y.-S. Tang, T.-Y. Yu, and K.-N. Chen, "Development and investigation of ultra-thin buffer layers used in symmetric Cu/Sn bonding and asymmetric Cu/Sn-Cu bonding for advanced 3D integration applications," in 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2017, pp. 85-88.
[65] Y.-J. Huang, H.-C. Chen, T.-Y. Yu, B.-H. Lai, Y.-C. Shih, and K.-N. Chen, "Asymmetry hybrid bonding using Cu/Sn bonding with polyimide for 3D heterogeneous integration applications," in 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2017, pp. 187-190.
[66] L.-l. Yan, C.-k. Lee, D.-q. Yu, A.-b. Yu, W.-K. Choi, J.-H. Lau, and S.-U. Yoon, "A Hermetic Seal Using Composite Thin-Film In/Sn Solder as an Intermediate Layer and Its Interdiffusion Reaction with Cu," Journal of Electronic Materials, journal article vol. 38, no. 1, pp. 200-207, 2009.
[67] S.-J. Cho, K.-W. Paik, and Y.-G. Kim, "The effect of the oxidation of Cu-base leadframe on the interface adhesion between Cu metal and epoxy molding compound," IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol. 20, no. 2, pp. S167-175, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊