跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐秉鴻
論文名稱:行人天橋設計對密集高層建築街廓與通道空間之室內外微氣候環境影響之研究
論文名稱(外文):Studying the Influences of Pedestrian Bridge Design on Outdoor and Indoor Microclimate Environments over Street Canyons and Passage Space in a Dense High-Rise Buildings
指導教授:楊安石楊安石引用關係
指導教授(外文):YANG, AN-SHIK
口試委員:李魁鵬蘇瑛敏曾豊育
口試日期:2019-06-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:計算流體力學行人天橋高層建築群環境風場分析
外文關鍵詞:CFDPedestrian bridgeHigh-rise buildingswind environments
相關次數:
  • 被引用被引用:1
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
行人天橋旨在將行人與道路上的車輛分開,以提高交通便利性和行人安全,然而,在街道中建造行人天橋可能導致微氣候變化;現今各大城市朝著高密度垂直化發展,市區處於接近無風狀態導致通風率下降和熱島效應漸增。本文考慮當地的微氣候條件和城市狀況,藉由計算流體力學(CFD)模擬技術,探討高層建築群間不同行人天橋的構型設計對於都市中街廓與通道空間之室內外空氣通風和舒適度的影響。結果顯示行人天橋的設置,對低層與中層建築高度當地室外微氣候環境的影響有限。改變行人天橋之寬度(3m, 6m, 9m)、內部淨高度(3m, 4m, 無蓋)及兩側屏幕高度(1.25m, 2m, 2.75m),以分析行人天橋通道內氣流速度、溫度和污染分佈,並以每小時空氣交換率(ACH)、生理等效溫度(PET)和清除流率(PFR)探討空氣通風、熱舒適性能和汙染去除率效能,以達到行人在天橋內有最大的舒適性。結果敘明天橋寬度縮減使氣流穿越之路徑減小而流阻較低,速度相對上升,故寬度較窄之天橋(設計案例一之寬度3m)顯現最高換氣率;但橋寬變化對太陽照射與對流熱傳效應下之橋內溫度分佈影響有限;無頂蓋(設計案例五)與較高之兩側屏幕(設計案例七之兩側屏幕高度2.75m)引致PET熱感受度為熱(38℃~42℃),其餘案例之PET熱感受度介於34℃至38℃之間屬溫暖範圍;天橋構型的變化對阻隔污染的效果並不顯著,較寬之天橋(設計案例三之寬度9m)則有著最佳之清除流率值(PFR)。
Pedestrian bridges are designed to separate pedestrians from vehicles on the road to improve traffic and pedestrian safety. However, the presence of pedestrian bridges may deteriorate the microclimates in street canyons. The development of high-density urban street canyons toward dense high-rise buildings causes the decline of ventilation rate, heat island effect and pollutant accumulation resulting from the breezeless state in the downtown area. Based on the local microclimate and urban conditions, this study applies the computational fluid dynamics (CFD) simulation technology to explore the influences of pedestrian bridge design between buildings on the air ventilation, thermal comfort and pollution dispersion of the indoor and outdoor spaces of the bridge and street canyons. The results show that the impact of pedestrian bridge structures on the local microclimate environment is insignificant for low and medium-rise buildings. Change the width (3m, 6m, 9m), interior height (3m, 4m, no cap) and barrier’s height (1.25m, 2m, 2.75m) of pedestrian bridge to analyze the velocity, temperature and pollution distributed over the internal passage space of pedestrian bridge. In addition, this paper explores the air ventilation, thermal comfort results and pollution removal rate in terms of the air exchange rate per hour (ACH), physiological equivalent temperature (PET) and purging flow rate (PFR) performance to maximize the comfort of pedestrians. The results show that the reduction of bridge’s width reduces the path of airflow, and flow resistance is lower, the velocity is relatively higher. Therefore, the bridge with narrow width (Case1 of pedestrian bridge’s width is 3m) shows the best ACH result, but the bridge’s width variation has no obvious influences on the temperature inside the bridge with effect of solar radiation and convection of heat transfer. No top cap (Case5) and higher barrier’s height (Case7 of barrier’s height is 2.75m) cause PET thermal sensitivity to be hot (38°C~42°C), except for them, the other Case’s PET results are warm (34°C~38 °C). Change the configuration of the pedestrian bridge on blocking the pollution is not significant, the wider pedestrian bridge (Case3 of pedestrian bridge’s width is 9m) has the best PFR value.
摘 要 i
誌 謝 v
目 錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 計算流體力學在通風評估上的運用 3
1.2.2城市策略於減緩熱島效應與提升行人舒適度之相關研究 4
1.2.3大氣邊界層理論 5
1.2.4舒適度評估指標 12
1.3 研究目的 15
第二章 研究區域 16
2.1計算模型說明 16
2.2行人天橋設計之準則 17
第三章 理論分析 19
3.1 基本假設與統御方程式 19
3.1.1 統御方程式 19
3.1.2 k-ε紊流方程式 20
3.2 大氣邊界層之風速剖面 21
3.3 熱輻射模型(Radiation Model) 22
3.4物種傳遞模型(Species Transport Model) 24
3.5邊界條件 26
3.6 數值方法 27
第四章 結果與討論 31
4.1網格獨立性測試 32
4.2計算模型驗證 34
4.3天橋對密集高層建築街廓室外風場結果 36
4.3.1速度場分析 36
4.3.2溫度場分析 38
4.4天橋空間之室內風場結果 41
4.4.1速度場分析 41
4.4.2溫度場分析 45
4.5天橋內微氣候環境評估 48
4.5.1換氣量ACH 48
4.5.2熱舒適度PET 49
4.5.3污染環境評估 51
第五章 結論 54
參考文獻 56
符號彙編 61

[1]Nelson, R.M., Pletcher, R.H. An Explicit Scheme for the Calculation of Confined Turbulent Flow with Heat Transfer., Proc. Heat Transfer and Fluid Mechanics Institute, Standford University Press, Standford, Califomia, 1974; 154-170.
[2]Brohus, H., Nielsen, P.V. CFD Models of Persons Evaluated by Full-Scale Wind Channel Experiments. Proc. ROOMVENT 96, 5th Int. Conf. on Air Distribution in Rooms, Yokohama, Japan. 1996; 2: 37-144.
[3]李芝嫻,垂直導光通風塔於室內通風性能之研究,碩士論文,國立臺灣科技大學建築與都市設計研究所,2008。
[4]村上周三,CFDによる建築‧都市の環境設計工學,東京:東京大學出版會,2000。
[5]Chen, Q. Comparison of different {kappa}-{epsilon} models for indoor air flow computations. Numerical Heat Transfer. Part B, Fundamentals, 1995; 28(3): 353-369.
[6]Chen, Q. Using computational tools to factor wind into architectural environment design. Energy and Buildings, 2004; 36(12): 1197-1209.
[7]Hussein, A.S., El-Shishiny, H. Influences of wind flow over heritage sites: A case study of the wind environment over the Giza Plateau in Egypt. Environmental Modelling & Software, 2009; 24(3): 389-410.
[8]Blocken, B., Carmeliet, J. Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples. Journal of Thermal Envelope and Building Science, 2004; 28(2): 107-159.
[9]Blocken, B., Carmeliet, J. Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: Generic sub-configuration validation, wind comfort assessment and uncertainty issues. Wind and Structures, an International Journal, 2008; 11(1): 51-70.
[10]Blocken, B., Janssen, W.D., van, H. T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environmental Modelling and Software, 2012; 30: 15-34.
[11]Allocca, C., Chen, Q., Glicksman, L. R. Design analysis of single-sided natural ventilation. Energy and Buildings, 2003; 35(8): 785-795.
[12]Jonas A., Jan C. Coupled CFD and building energy simulations for studying the impacts of building height topology and buoyancy on local urban microclimates. Urban Climate, 2017; 21: 278-305.
[13]蕭江碧、陳瑞鈴、陳若華,建築群配置方式與自然通風效應之研究,內政部建築研究所,1999。
[14]李偉誠,Using the Design Variables of Street Canyon to Evaluate the Wind Environment in Outdoor Pedestrian Area of Major Cities in Taiwan,國立成功大學都市計劃學系碩博士班論文,2010。
[15]黃心瑤,亞熱帶騎樓建築風環境影響之研究,國立台北科技大學建築與都市設計研究所碩士論文,2014。
[16]莊家梅,夏季戶外空間熱舒適性之研究-以台南縣市、高雄市戶外空間為研究對象,國立成功大學建研究所碩士論文,2008。
[17]Taeyeon K., Byungseon S.K., Kwangho K. A wind tunnel experiment and CFD analysis on airflow performance of enclosed-arcade markets in Korea, 2010; 45(5): 1329-1338.
[18]Jiang H., Akira H. Measurement and evaluation of the summer microclimate in the semi-enclosed space under a membrane structure, Building and Environment, 2010; 45(1): 230-242.
[19]Youngryel R., Seogcheol K., Dowon L. The influence of wind flows on thermal comfort in the Daechung of a traditional Korean house, Building and Environment, 2009; 44(1): 18-26.
[20]Jian H., Zhiwen L., Mats S., Jian G. Natural ventilation assessment in typical open and semi-open urban environments under various wind directions, Building and Environment, 2013; 70: 318-333.
[21]朱佳仁,環境流體力學,台北:科技圖書出版公司,2003。
[22]Davenport, A.G. The relationship of wind structure to wind loading. International Conference on the Wind Effects on Buildings and Structures. National Physical Laboratory, Teddington, Middlesex, England. 1963; 2: 26-28.
[23]內政部營建署,建築物耐風設計規範及解說,營建雜誌社,2006。
[24]Plate, E.J., Kiefer, H. Wind loads in urban areas.Journal of Wind Engineering and Industrial Aerodynamics, 2001; 89: 1233-1256.
[25]Wieringa, J. Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 1992; 41: 357-368.
[26]Hellman, G. Über die Bewegung der Luft in den untersten Schichten der Atmosphäre, Meteorol. Z. 1916; 34: 273.
[27]Simiu, E., Scanlan, R.H. Wind effects on structures: An introduction to wind engineering. New York: Wiley. 1986.
[28]ASHRAE Standard 55. "Thermal Environmental Conditions for Human Occupancy. 2004.
[29]P. O. Fanger. Thermal comfort, Danish Technical Press, Copenhagen. 1970.
[30]Höppe, P. "The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment." International journal of Biometeorology, 1999; 43(2): 71-75.
[31]Pickup, J. and R. de Dear. "An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. in Biometeorology and urban climatology at the turn of the millenium." Selected Papers from the Conference ICB-ICUC. 2000.
[32]Ole Fanger P., Toftum J. "Extension of the PMV model to non-air-conditioned buildings in warm climates." Energy and Buildings, 2002; 34(6): 533-536.
[33]Lai, P.-C., et al. "Spatial analytical methods for deriving a historical map of physiological equivalent temperature of Hong Kong." Building and Environment, 2016; 99: 22-28.
[34]VDI. Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part I: Climate. VDI guildline 3787. 1998.
[35]Ketterer C., Matzarakis A. "Mapping the Physiologically Equivalent Temperature in urban areas using artificial neural network." Landscape and Urban Planning, 2016; 150: 1-9.
[36]Taleghani M., et al. "Outdoor thermal comfort within five different urban forms in the Netherlands." Building and Environment, 2015;83: 65-78.
[37]Sanusi R., et al. "Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index." Landscape and Urban Planning, 2017; 157: 502-511.
[38]Matzarakis A., Rutz F., Mayer H. "Modelling radiation fluxes in simple and complex environments—application of the RayMan model." International Journal of Biometeorology, 2007; 51(4): 323-334.
[39]Matzarakis A., Mayer H. "Another kind of environmental stress: thermal stress. " WHO newsletter, 1996; 18: 7-10.
[40]Lin T.-P., Matzarakis A. "Tourism climate and thermal comfort in Sun Moon Lake, Taiwan." International Journal of Biometeorology, 2008; 52(4): 281-290.
[41]交通部中央氣象局,《大氣概述一蒲福風級》。
[42]Jian H., Yuguo L., Mats S. Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy. Journal of Wind Engineering and Industrial Aerodynamics, 2011; 99(10): 1036-1055.
[43]內政部,《市區道路及附屬工程設計規範》,2015。
[44]ANSYS 14.0, ICEM CFD®, Users manual, ANSYS, Inc. 2012.
[45]Launder B.E., Spalding D.B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974;3: 269-89.
[46]Launder B.E., Spalding D.B. Mathematical models of turbulence. London: Academic Press. 1972.
[47]Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, Academic Press publishers, London. 1972.
[48]Wieringa J. Updating the Davenport roughness classification, Journal of Wind Engineering and Industrial Aerodynamics, 1992; 41: 357–368.
[49]Chen W.-F. Handbook of structural engineering. Boca Raton, Fla: CRC Press. 1997.
[50]Van D.J.P., Raithby G.D. Enhancements of the Simple Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer, Part B: Fundamentals, 1984; 7(2): 147-163.
[51]Jang D.S., Jetli R., Acharya S. Comparison of the Piso, Simpler, and Simplec Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems. Numerical Heat Transfer, Part B: Fundamentals, 1986;10(3): 209-228.
[52]ANSYS 18.2, ANSYS Fluent Theory Guide, ANSYS, Inc. 2017.
[53]Salim S.M., Buccolieri R., Chan A., Di Sabatino S. Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: comparison between RANS and LES. Journal of Wind Engineering and Industrial Aerodynamics, 2011; 99:103-113.
[54]Wang M., Lin C.H., Chen Q.Y. Advanced turbulence models for predicting transport in enclosed environments. Building and Environment, 2012; 47:40-49.
[55]Zhang Z., Chen Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmospheric Environment, 2006; 40:3396-3408.
[56]Ansys 14.0, User’s manual, ANSYS, Inc. 2012.
[57]Tominaga Y., Stathopoulos T. Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmospheric Environment, 2007; 41: 8091-8099.
[58]Di Sabatino S., Buccolieri R., Pulvirenti B., Britter R. Simulations of pollutant dispersion within idealized urban-type geometries with CFD and integral models. Atmospheric Environment, 2007; 41: 8316-8329.
[59]M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul. Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations. Journal of Wind Engineering and Industrial Aerodynamics, 2011; 99: 330-339.
[60]An Shilk Y., Yu Hsuan J. Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy, 2017; 192: 178-200.
[61]Hooff T., Blocken B. On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Computers & Fluids. 2010; 39(7):1146-1155.
[62]Jian H., Yuguo L., Mats S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Building and Environment, 2012; 56: 346-360.
[63]Bady M., Kato S., Huang H. Towards the application of indoor ventilation efficiency indices to evaluate the air quality of urban areas. BAE Building and Environment, 2008; 43: 1991-2004.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top