[1]Nelson, R.M., Pletcher, R.H. An Explicit Scheme for the Calculation of Confined Turbulent Flow with Heat Transfer., Proc. Heat Transfer and Fluid Mechanics Institute, Standford University Press, Standford, Califomia, 1974; 154-170.
[2]Brohus, H., Nielsen, P.V. CFD Models of Persons Evaluated by Full-Scale Wind Channel Experiments. Proc. ROOMVENT 96, 5th Int. Conf. on Air Distribution in Rooms, Yokohama, Japan. 1996; 2: 37-144.
[3]李芝嫻,垂直導光通風塔於室內通風性能之研究,碩士論文,國立臺灣科技大學建築與都市設計研究所,2008。
[4]村上周三,CFDによる建築‧都市の環境設計工學,東京:東京大學出版會,2000。
[5]Chen, Q. Comparison of different {kappa}-{epsilon} models for indoor air flow computations. Numerical Heat Transfer. Part B, Fundamentals, 1995; 28(3): 353-369.
[6]Chen, Q. Using computational tools to factor wind into architectural environment design. Energy and Buildings, 2004; 36(12): 1197-1209.
[7]Hussein, A.S., El-Shishiny, H. Influences of wind flow over heritage sites: A case study of the wind environment over the Giza Plateau in Egypt. Environmental Modelling & Software, 2009; 24(3): 389-410.
[8]Blocken, B., Carmeliet, J. Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples. Journal of Thermal Envelope and Building Science, 2004; 28(2): 107-159.
[9]Blocken, B., Carmeliet, J. Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: Generic sub-configuration validation, wind comfort assessment and uncertainty issues. Wind and Structures, an International Journal, 2008; 11(1): 51-70.
[10]Blocken, B., Janssen, W.D., van, H. T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environmental Modelling and Software, 2012; 30: 15-34.
[11]Allocca, C., Chen, Q., Glicksman, L. R. Design analysis of single-sided natural ventilation. Energy and Buildings, 2003; 35(8): 785-795.
[12]Jonas A., Jan C. Coupled CFD and building energy simulations for studying the impacts of building height topology and buoyancy on local urban microclimates. Urban Climate, 2017; 21: 278-305.
[13]蕭江碧、陳瑞鈴、陳若華,建築群配置方式與自然通風效應之研究,內政部建築研究所,1999。
[14]李偉誠,Using the Design Variables of Street Canyon to Evaluate the Wind Environment in Outdoor Pedestrian Area of Major Cities in Taiwan,國立成功大學都市計劃學系碩博士班論文,2010。
[15]黃心瑤,亞熱帶騎樓建築風環境影響之研究,國立台北科技大學建築與都市設計研究所碩士論文,2014。[16]莊家梅,夏季戶外空間熱舒適性之研究-以台南縣市、高雄市戶外空間為研究對象,國立成功大學建研究所碩士論文,2008。[17]Taeyeon K., Byungseon S.K., Kwangho K. A wind tunnel experiment and CFD analysis on airflow performance of enclosed-arcade markets in Korea, 2010; 45(5): 1329-1338.
[18]Jiang H., Akira H. Measurement and evaluation of the summer microclimate in the semi-enclosed space under a membrane structure, Building and Environment, 2010; 45(1): 230-242.
[19]Youngryel R., Seogcheol K., Dowon L. The influence of wind flows on thermal comfort in the Daechung of a traditional Korean house, Building and Environment, 2009; 44(1): 18-26.
[20]Jian H., Zhiwen L., Mats S., Jian G. Natural ventilation assessment in typical open and semi-open urban environments under various wind directions, Building and Environment, 2013; 70: 318-333.
[21]朱佳仁,環境流體力學,台北:科技圖書出版公司,2003。
[22]Davenport, A.G. The relationship of wind structure to wind loading. International Conference on the Wind Effects on Buildings and Structures. National Physical Laboratory, Teddington, Middlesex, England. 1963; 2: 26-28.
[23]內政部營建署,建築物耐風設計規範及解說,營建雜誌社,2006。
[24]Plate, E.J., Kiefer, H. Wind loads in urban areas.Journal of Wind Engineering and Industrial Aerodynamics, 2001; 89: 1233-1256.
[25]Wieringa, J. Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 1992; 41: 357-368.
[26]Hellman, G. Über die Bewegung der Luft in den untersten Schichten der Atmosphäre, Meteorol. Z. 1916; 34: 273.
[27]Simiu, E., Scanlan, R.H. Wind effects on structures: An introduction to wind engineering. New York: Wiley. 1986.
[28]ASHRAE Standard 55. "Thermal Environmental Conditions for Human Occupancy. 2004.
[29]P. O. Fanger. Thermal comfort, Danish Technical Press, Copenhagen. 1970.
[30]Höppe, P. "The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment." International journal of Biometeorology, 1999; 43(2): 71-75.
[31]Pickup, J. and R. de Dear. "An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. in Biometeorology and urban climatology at the turn of the millenium." Selected Papers from the Conference ICB-ICUC. 2000.
[32]Ole Fanger P., Toftum J. "Extension of the PMV model to non-air-conditioned buildings in warm climates." Energy and Buildings, 2002; 34(6): 533-536.
[33]Lai, P.-C., et al. "Spatial analytical methods for deriving a historical map of physiological equivalent temperature of Hong Kong." Building and Environment, 2016; 99: 22-28.
[34]VDI. Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part I: Climate. VDI guildline 3787. 1998.
[35]Ketterer C., Matzarakis A. "Mapping the Physiologically Equivalent Temperature in urban areas using artificial neural network." Landscape and Urban Planning, 2016; 150: 1-9.
[36]Taleghani M., et al. "Outdoor thermal comfort within five different urban forms in the Netherlands." Building and Environment, 2015;83: 65-78.
[37]Sanusi R., et al. "Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index." Landscape and Urban Planning, 2017; 157: 502-511.
[38]Matzarakis A., Rutz F., Mayer H. "Modelling radiation fluxes in simple and complex environments—application of the RayMan model." International Journal of Biometeorology, 2007; 51(4): 323-334.
[39]Matzarakis A., Mayer H. "Another kind of environmental stress: thermal stress. " WHO newsletter, 1996; 18: 7-10.
[40]Lin T.-P., Matzarakis A. "Tourism climate and thermal comfort in Sun Moon Lake, Taiwan." International Journal of Biometeorology, 2008; 52(4): 281-290.
[41]交通部中央氣象局,《大氣概述一蒲福風級》。
[42]Jian H., Yuguo L., Mats S. Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy. Journal of Wind Engineering and Industrial Aerodynamics, 2011; 99(10): 1036-1055.
[43]內政部,《市區道路及附屬工程設計規範》,2015。
[44]ANSYS 14.0, ICEM CFD®, Users manual, ANSYS, Inc. 2012.
[45]Launder B.E., Spalding D.B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974;3: 269-89.
[46]Launder B.E., Spalding D.B. Mathematical models of turbulence. London: Academic Press. 1972.
[47]Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, Academic Press publishers, London. 1972.
[48]Wieringa J. Updating the Davenport roughness classification, Journal of Wind Engineering and Industrial Aerodynamics, 1992; 41: 357–368.
[49]Chen W.-F. Handbook of structural engineering. Boca Raton, Fla: CRC Press. 1997.
[50]Van D.J.P., Raithby G.D. Enhancements of the Simple Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer, Part B: Fundamentals, 1984; 7(2): 147-163.
[51]Jang D.S., Jetli R., Acharya S. Comparison of the Piso, Simpler, and Simplec Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems. Numerical Heat Transfer, Part B: Fundamentals, 1986;10(3): 209-228.
[52]ANSYS 18.2, ANSYS Fluent Theory Guide, ANSYS, Inc. 2017.
[53]Salim S.M., Buccolieri R., Chan A., Di Sabatino S. Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: comparison between RANS and LES. Journal of Wind Engineering and Industrial Aerodynamics, 2011; 99:103-113.
[54]Wang M., Lin C.H., Chen Q.Y. Advanced turbulence models for predicting transport in enclosed environments. Building and Environment, 2012; 47:40-49.
[55]Zhang Z., Chen Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmospheric Environment, 2006; 40:3396-3408.
[56]Ansys 14.0, User’s manual, ANSYS, Inc. 2012.
[57]Tominaga Y., Stathopoulos T. Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmospheric Environment, 2007; 41: 8091-8099.
[58]Di Sabatino S., Buccolieri R., Pulvirenti B., Britter R. Simulations of pollutant dispersion within idealized urban-type geometries with CFD and integral models. Atmospheric Environment, 2007; 41: 8316-8329.
[59]M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul. Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations. Journal of Wind Engineering and Industrial Aerodynamics, 2011; 99: 330-339.
[60]An Shilk Y., Yu Hsuan J. Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy, 2017; 192: 178-200.
[61]Hooff T., Blocken B. On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Computers & Fluids. 2010; 39(7):1146-1155.
[62]Jian H., Yuguo L., Mats S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Building and Environment, 2012; 56: 346-360.
[63]Bady M., Kato S., Huang H. Towards the application of indoor ventilation efficiency indices to evaluate the air quality of urban areas. BAE Building and Environment, 2008; 43: 1991-2004.