|
Al-subari, K., Al-baddai, S., Tomé, A. M., Volberg, G., &Lang, E. W. (2015). Analysis of EEG Data Collected during a Contour Integration Task. Plos One, 10(4), 1–27. https://doi.org/10.1371/journal.pone.0119489 Atkinson, R. C., &Shiffrin, R. M. (1971). The Control of Short-Term Memory. Scientific American, 225, 82–90. https://doi.org/10.1038/ scientificamerican0871-82 Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559. https://doi.org/10.1126/science.1736359 Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. https://doi.org/10.1016/S1364-6613(00)01538-2 Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201 Baddeley, A. (2007). Working Memory, Thought, and Action. Oxford, United Kingdom: Oxford University Press. Retrieved from http://0-www.oxfordscholarship.com.oasis.unisa.ac.za/view/10.1093/acprof:oso/9780198528012.001.0001/acprof-9780198528012 Baddeley, A., &Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89. https://doi.org/10.1016/j.cub.2009.12.014 Broadway, J. M., &Engle, R. W. (2011a). Individual Differences in Working Memory Capacity and Temporal Discrimination. PLoS ONE, 6(10). https://doi.org/10.1371/journal.pone.0025422 Broadway, J. M., &Engle, R. W. (2011b). Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychologica, 137(1), 115–126. https://doi.org/10.1016/j.actpsy.2011.03.008 Brown, K. W., &Ryan, R. M. (2003). The Benefits of Being Present: Mindfulness and Its Role in Psychological Well-Being. Journal of Personality and Social Psychology, 84(4), 822–848. https://doi.org/10.1037/0022-3514.84.4.822 Buzsáki, G., &Wang, X.-J. (2012). Mechanisms of Gamma Oscillations. Annual Review of Neuroscience, 35(1), 203–225. https://doi.org/10.1146/annurev-neuro-062111-150444 Carver, C. S., &White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319–333. https://doi.org/10.1037/0022-3514.67.2.319 Chang, C.-F., Liang, W.-K., Lai, C.-L., Hung, D. L., &Juan, C.-H. (2016). Theta Oscillation Reveals the Temporal Involvement of Different Attentional Networks in Contingent Reorienting. Frontiers in Human Neuroscience, 10(June), 1–11. https://doi.org/10.3389/fnhum.2016.00264 Cong, F., Sipola, T., Huttunen-Scott, T., Xu, X., Ristaniemi, T., &Lyytinen, H. (2009). Hilbert-Huang versus Morlet wavelet transformation on mismatch negativity of children in uninterrupted sound paradigm. Nonlinear Biomedical Physics, 3(1), 1–8. https://doi.org/10.1186/1753-4631-3-1 Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, Z. D., Wilhelm, O., &Engle, R. W. (2005). Working memory span tasks : A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772 Conway, A. R. A., Kane, M. J., &Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. https://doi.org/10.1016/j.tics.2003.10.005 Crowne, D. P., &Marlowe, D. (1960). A new scale of social desirability independent of psychopathology. Journal of Consulting Psychology, 24(4), 349–354. https://doi.org/10.1037/h0047358 Daneman, M., &Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450–466. https://doi.org/10.1016/S0022-5371(80)90312-6 Dong, S., Reder, L. M., Yao, Y., Liu, Y., &Chen, F. (2015). Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Research, 1616, 146–156. https://doi.org/10.1016/j.brainres.2015.05.003 Foster, J. L., Shipstead, Z., Harrison, T. L., Hicks, K. L., Redick, T. S., &Engle, R. W. (2015). Shortened complex span tasks can reliably measure working memory capacity. Memory & Cognition, 43(2), 226–236. https://doi.org/10.3758/s13421-014-0461-7 Groppe, D. M., Urbach, T. P., &Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields II: Simulation studies. Psychophysiology, 48(12), 1726–1737. https://doi.org/10.1111/j.1469-8986.2011.01272.x Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., &Engle, R. W. (2013). Working Memory Training May Increase Working Memory Capacity but Not Fluid Intelligence. Psychological Science, 24(12), 2409–2419. https://doi.org/10.1177/0956797613492984 Hsu, C.-H., Lee, C.-Y., &Liang, W.-K. (2016). An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. Journal of Neuroscience Methods, 264, 78–85. https://doi.org/10.1016/j.jneumeth.2016.02.015 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., …Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193 Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., &Meier, B. (2010). The concurrent validity of the N -back task as a working memory measure. Memory, 18(4), 394–412. https://doi.org/10.1080/09658211003702171 Jensen, O. (2002). Oscillations in the Alpha Band (9-12 Hz) Increase with Memory Load during Retention in a Short-term Memory Task. Cerebral Cortex, 12(8), 877–882. https://doi.org/10.1093/cercor/12.8.877 Johnson, R. (1993). On the neural generators of the P300 component of the event-related potential. Psychophysiology, 30(1), 90–97. https://doi.org/10.1111/j.1469-8986.1993.tb03208.x Kane, M. J., Conway, A. R. A., Miura, T. K., &Colflesh, G. J. H. (2007). Working memory, attention control, and the n-back task: A question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615–622. https://doi.org/10.1037/0278-7393.33.3.615 Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., &Engle, R. W. (2004). The Generality of Working Memory Capacity: A Latent-Variable Approach to Verbal and Visuospatial Memory Span and Reasoning. Journal of Experimental Psychology: General, 133(2), 189–217. https://doi.org/10.1037/0096-3445.133.2.189 Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007 Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577. https://doi.org/10.1017/S0048577201990559 Maris, E., &Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 Miller, G. A. (1956). The Magic Number Seven, Plus or Minus Two: Some Limits on our Capcity for Processing Information. The Psychological Review, 63(2), 81–97. Palomäki, J., Kivikangas, M., Alafuzoff, A., Hakala, T., &Krause, C. M. (2012). Brain oscillatory 4–35Hz EEG responses during an n-back task with complex visual stimuli. Neuroscience Letters, 516(1), 141–145. https://doi.org/10.1016/j.neulet.2012.03.076 Pesonen, M., Hämäläinen, H., &Krause, C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain Research, 1138(1), 171–177. https://doi.org/10.1016/j.brainres.2006.12.076 Picton, T. W. (1992). The P300 Wave of the Human Event-Related Potential. Journal of Clinical Neurophysiology, 9(4), 456–479. https://doi.org/10.1097/00004691-199210000-00002 Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 Polich, J., &Criado, J. R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60(2), 172–185. https://doi.org/10.1016/j.ijpsycho.2005.12.012 Redick, T. S., &Lindsey, D. R. B. (2013). Complex span and n-back measures of working memory: A meta-analysis. Psychonomic Bulletin and Review, 20(6), 1102–1113. https://doi.org/10.3758/s13423-013-0453-9 Roberts, R., &Gibson, E. (2002). Individual Differences in Sentence Processing. Journal of Psycholinguistic Research, 31(6), 573–598. Roux, F., Wibral, M., Mohr, H. M., Singer, W., &Uhlhaas, P. J. (2012). Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory. Journal of Neuroscience, 32(36), 12411–12420. https://doi.org/10.1523/JNEUROSCI.0421-12.2012 Scharinger, C., Soutschek, A., Schubert, T., &Gerjets, P. (2015). When flanker meets the n-back: What EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology, 52, 1293–1304. https://doi.org/10.1111/psyp.12500 Scharinger, C., Soutschek, A., Schubert, T., &Gerjets, P. (2017). Comparison of the Working Memory Load in N-Back and Working Memory Span Tasks by Means of EEG Frequency Band Power and P300 Amplitude. Frontiers in Human Neuroscience, 11(6), 1–19. https://doi.org/10.3389/fnhum.2017.00006 Spielberger, C. D., Gorsuch, R. L., Lushene, P. R., Vagg, P. R., &Jacobs, A. G. (1983). Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press. Squires, N. K., Squires, K. C., &Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387–401. https://doi.org/10.1016/0013-4694(75)90263-1 Sutton, S., Braren, M., Zubin, J., &John, E. R. (1965). Evoked-Potential Correlates of Stimulus Uncertainty. Science, 150(3700), 1187–1188. https://doi.org/10.1126/science.150.3700.1187 Tsai, Y.-C., Lu, H.-J., Chang, C.-F., Liang, W.-K., Muggleton, N. G., &Juan, C.-H. (2017). Electrophysiological and behavioral evidence reveals the effects of trait anxiety on contingent attentional capture. Cognitive, Affective, & Behavioral Neuroscience, 17(5), 973–983. https://doi.org/10.3758/s13415-017-0526-8 Tseng, P., Chang, Y.-T., Chang, C.-F., Liang, W.-K., &Juan, C.-H. (2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 6(1), 32138. https://doi.org/10.1038/srep32138 Turner, M. L., &Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154. https://doi.org/10.1016/0749-596X(89)90040-5 Unsworth, N., &Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132. https://doi.org/10.1037/0033-295X.114.1.104 Unsworth, N., Heitz, R. P., Schrock, J. C., &Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. https://doi.org/10.3758/BF03192720 Unsworth, N., Redick, T. S., Heitz, R. P., Broadway, J. M., &Engle, R. W. (2009). Complex working memory span tasks and higher-order cognition: A latent-variable analysis of the relationship between processing and storage. Memory, 17(6), 635–654. https://doi.org/10.1080/09658210902998047 Watter, S., Geffen, G. M., &Geffen, L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38(6), 998–1003. https://doi.org/10.1111/1469-8986.3860998 Williams, N., Nasuto, S. J., &Saddy, J. D. (2011). Evaluation of Empirical Mode Decomposition for Event-Related Potential Analysis. EURASIP Journal on Advances in Signal Processing, 2011(1), 1–11. https://doi.org/10.1155/2011/965237 Wu, Z., &Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41. https://doi.org/10.1142/S1793536909000047
|