跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁瑞宗
研究生(外文):Jui-chung Weng
論文名稱:氧化鉍複合粉體的製備與光反應特性之研究
論文名稱(外文):Preparation and Photoreactive Properties of Bismuth Oxide Composite Powder
指導教授:陳錦毅陳錦毅引用關係
指導教授(外文):Chin-yi Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:157
中文關鍵詞:LED氧化鋅噴霧熱解法氧化鉍水熱法光觸媒
外文關鍵詞:photocatalystzinc oxidehydrothermalbismuth oxideLEDspray pyrolysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用硝酸鉍作為先驅物,以噴霧熱解法與水熱法製備氧化鉍基粉體,探討不同製程在粉體特性、光學分析上的影響;並比較擇優,最後以硝酸鉍基地相作為先驅物,添加不同比例硝酸鋅(5、10、20 at%)先驅物探討同一基地相不同鋅離子添加量對粉體特性、光學特性、觸媒活性之影響;與結合紫外光晶片激發RGB螢光粉之白光LED晶粒,探討氧化鉍基觸媒粉體對白光LED晶粒在紫外漏光、演色性、出光率上的影響,同時具備光觸媒擁有淨化空氣之能力。
研究結果顯示:
(1) 粉體特性:
以噴霧熱解法製備純氧化鉍基粉體具有較佳的粉體尺寸、商業優勢、光學優點以及較佳的紫外漏光抑制效能;以同一基地相添加不同含量鋅離子(5、10、20 at%)之粉體呈現空心球、實心球及破碎碗狀結構,且由計算顆粒尺寸、晶格常數、晶粒大小及比表面積上,添加氧化鋅能助於晶粒成長,但超過一固溶量值析出成第二相抑制了顆粒成長,導致比表面積隨鋅添加量越大而增加。
(2) 光學特性:
氧化鋅添加於氧化鉍基粉體系統中能有效的增加光學特性,將噴霧熱解法合成純氧化鉍粉體利用網版印刷法混和光學膠塗佈於玻璃基材上,作為對紫外光抑制之效果量測,乃隨著觸媒濃度之增加而遞增且有逐漸飽和之趨勢。其中以SP600 ℃、SP700 ℃對紫外光抑制效果最佳其效能分別為70%及89%。而添加0、5、10、20 at%氧化鋅在效能表現上SP600℃系統為70%、68%、72%、72%;SP700℃系統為89%、65%、69%、73%。
In the present study, bismuth oxide (Bi2O3) powders were prepared from bismuth nitrate (BiNH) by spray pyrolysis (SP) and hydrothermal (HT) processes. The influences of both processes on the characteristics and photoreactive behaviors of the resulting powders were investigated. Subsequently the Bi2O3 powder was doped with various amounts (0, 5, 10 and 20 at%) of zinc (Zn) to modify its characteristics, photoreactive and catalytic properties. The powders were then deposited onto a diffusor of UV-LED (ultraviolet light-emitting diode) to inhibit the UV light emitted from the LED. The UV light inhibition, color rendering index and transmittance as well as the degradation of air pollution of the powders were discussed.
The experimental results indicated that the SP-derived Bi2O3 powder possessed smaller particle size, lower cost and better photoractive and UV-resistance properties comparing to the HT-derived powder. The microstructural observation suggested that the SP Bi2O3 particles exhibited solid, hollow and bowl-like structures no matter Zn was doped or not. Furthermore, small amounts of Zn addition may cause the increase in crystallite size of Bi2O3. When the addition excesses a certain value, the immiscible secondary phase may precipitate to inhibit the grain growth of Bi2O3, causing the increase in specific surface area of the Bi2O3 with increasing the Zn addition.
Zn addition can enhance the photoreactive performance of the Bi2O3 powder. No obvious influence on the catalytic properties of Bi2O3 can be found from the evaluations of lattice parameter, crystallite size and surface area when Zn was doped. The SP powders were then mixed with optical paste and screen-printed onto the diffusor of UV-LED for evaluation of UV inhibition. The UV inhibition of the undoped SP Bi2O3 powder was increased and then saturated gradually with the increase of Bi2O3 solid content. The Bi2O3 powder pyrolyzed at 600 and 700°C (denoted as SP600 and SP700 powders) exhibited better UV inhibition efficiencies of 70% and 89%, respectively, in this system. The UV inhibitions of SP600 powder were 70%, 68%, 72% and 72% when Zn additions were 0, 5, 10 and 20 at%, respectively. Whereas, the UV inhibitions of SP700 powder were 89%, 65%, 69% and 73% when Zn additions were 0, 5, 10 and 20 at%, respectively.
目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章、前言 1
第二章、文獻回顧 3
2.1 氧化鉍之介紹與製備 3
2.1.1 氧化鉍的基本結構與特性 3
2.1.2 氧化鉍的結構介紹 4
2.1.3 氧化鉍的改質 6
2.1.4 氧化鉍的製備 8
2.1.5 氧化鉍的製程分析比較 13
2.1.6 國外研究氧化鉍之現況 15
2.1.7 國內研究氧化鉍之現況 18
2.2 光觸媒 19
2.2.1 光觸媒的原理 20
2.2.2 具可見光催化效能之光觸媒 20
2.2.3 氧化鉍的光觸媒特性 25
2.2.4 光觸媒的改質 26
2.2.5 光觸媒受光催化降解效能 29
2.2.6 國內研究光觸媒之現況 32
2.3 發光二極體 34
2.3.1 發光特性 34
2.3.2 發展現況 38
2.3.3 發光二極體種類與應用 38
2.3.4 白光LED 40
2.3.5 色溫及演色性 40
第三章、實驗步驟 43
3.1 實驗設計與目的 43
3.2 觸媒材料製備 46
3.2.1 粉體製備 46
3.2.2 網印 48
3.3 觸媒材料之特性分析 49
3.3.1 熱重分析 49
3.3.2 X光繞射分析 49
3.3.3 冷場發射掃描式電子顯微鏡表面型態分析 50
3.3.4 穿透式電子顯微鏡粉體結構分析 51
3.3.5 化學分析電子能譜儀 51
3.3.6 可見光-紫外光譜分析儀 51
3.3.7 高解析比表面積分析儀 52
3.4 光學行為之量測 53
3.4.1 LED積分球檢測分析 53
3.4.2 光催化降解檢測 55
第四章、結果與討論 57
4.1  先驅物粉體之特性分析 57
4.1.1 TGA熱重分析 57
4.2  噴霧熱解粉體之特性分析 58
4.2.1 XRD結晶結構分析 58
4.2.2 FESEM表面型態分析 61
4.2.3 TEM 微結構分析 66
4.2.4 XPS粉體成分分析 67
4.2.5 UV-Visble 光學特性分析 71
4.2.6 BET分析 72
4.2.7 噴霧熱解粉體光電特性分析 73
4.3  水熱法粉體之特性分析 86
4.3.1 XRD結晶結構分析 86
4.3.2 HRTEM顯微結構分析 87
4.3.3 FESEM表面形態分析 89
4.3.4 水熱法光學分析 92
4.3.5 製程比較 93
4.4  噴霧熱解複合粉體之特性分析 98
4.4.1 XRD結晶結構分析 98
4.4.2 FESEM表面型態分析 103
4.4.3 TEM 微結構分析 105
4.4.4 XPS粉體成分分析 106
4.4.5 UV-Visble 光學特性分析 113
4.4.6 BET 分析 116
4.4.7 噴霧熱解氧化鉍基粉體光電特性之分析 117
4.4.8 光催化分析 133
4.4.9 螢光光譜分析(PL) 147
第五章、結論 151
第六章、未來方向 154
參考文獻 155
【1】 T. Takahashi, H. Iwahara and Y. Nagai, “High oxide ion conducting in sintered Bi2O3 containing SrO2,CaO or La2O3”, J. Appl. Electrochem. 2 (1972) 97.
【2】 P.Shuk, H.D.Wiemhofer, U.Guth, W.Gopel, M.Greenblatt,“Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionic 89 (1996) 179-196.
【3】 H.A. Harwig, Thesis, State University Utrecht (1977).
【4】 L.G. Sillen, Ark. Kemi Mineral. Geol. 12A (1937) 1.
【5】 H.A. Harwig, Z. Anorg. Allg. Chem. 444 (1978) 151
【6】 H.A. Harwig, Thesis, State University Utrecht (1977).
【7】 H. Iwahara, T. Esaka, T. Sato and T. Takahashi, J. Solid
State Chem. 39 (1981) 173.
【8】 W. Li,“Facile synthesis of nanodisperse Bi2O3 nanoparticles”, Materials Chemistry and Physics 99 (2006) 174-180.
【9】 F. Duan, Y. Zheng, M. Chen,“Flowerlike PtCl4/Bi2WO6 composite photocatalyst with enhanced visible-light-induced photocatalytic activity”, Appl. Surf. Sci. 257 (2011) 1972-1978.
【10】H.Weidong, Q.Wei, W.Xiaohong, D.Xianbo, C.Long, J. Zhaohua, “ The Photocatalytic Properties of Bismuth Oxide Films Prepared Through the Sol–Gel Method”, Thin Solid Films, Vol. 515, Issue 13, pp. (2007)5362-5365.
【11】C. Wang, C. Shao, Y. Liu, L. Zhang,“Photocatalytic Properties BiOCl and Bi2O3 Nanofibers Prepared by Electrospinning”, Scripta Materialia, Vol. 59, Issue 3, pp. (2008)332-335.
【12】G. Messing, S. Zhzng, and G. V. Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolsis ”, Journal of American Ceramic Society, 76 (1993) 2706-2726.
【13】 F. Iskander, L. Gradon and K. Okuyama, “Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticles sol.” Journal of Colloid and Interface Science, 265 (2003) 296-303.
【14】Y. Bessekhouad, D. Robert, J.V. Webber, “Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2, and ZnMn2O4/TiO2 heterojunction”, Catal. Today 101 (2005) 315-321.
【15】A. Hameed, V. Gombac, T. Montini, M. Graziani, P. Fornasiero, “Photocatalytic activity of zinc modified Bi2O3”, Chem. Phys. Lett.472 (2009) 212.
【16】 M. Miyauchi, A. Nakajima, T. Watanabe, K.Hashimoto, “Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films”, Chem. Mater. 14 (2002) 2812-2816.
【17】A. Hameed, V. Gombac, T. Montini, L. Felisari, P. Fornasiero, “Photocatalytic activity of zinc modified Bi2O3” Chem. Physics Letters. 483 (2009) 254-261.
【18】A. Sclafani, L. Palmisano, G. Marci, A.M. Venezia, “Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension”, Sol. Energy Mater. Sol. Cells 51(1998) 203-219.
【19】J. Tang, Z. Zou, J. Ye, “Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation”, Catal. Lett. 92 (2004) 53-56.
【20】J. Yu, J. Xiong, B. Cheng, Y. Yu, J. Wang,“Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders”, J. Solid State Chem. 178 (2005) 1968-1972.
【21】Z. Zhang, W. Wang, M. Shang, W. Yin, “Low-temperature combustion synthesis of Bi2WO6 nanoparticles as avisible-light-driven photocatalyst”, J. Hazard. Mater. 177 (2010) 1013-1018.
【22】L. Zhou, W. Wang, L. Zhang, “Utrasonic-assisted synthesis of visible-induced Bi2MO6(M=W,Mo) photocatalysts”,Chem. 268 (2007) 195-200.
【23】W. Yin, W. Wang, S. Sun, “Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation”,catalysis communication, 11(2010)647-650.
【24】J. Bi, L. Wu, J. Li, Z. Li, X. Wang, X. Fu,“Simple solvothermal routes to synthesized nanocrystalline Bi2MoO6 photocatalysts with different morphologies”, Acta Materialia 55 (2007) 4699-4705.
【25】方冠榮,「以氧化鉍系氧離子導體作為固態氧化物燃料電池電解質之研究」,碩士論文,國立成奶j學材料科學與工程學系,2009.
【26】林文台,「In摻雜及製程條件對ZnO奈米板生長及光學性質影響之研究」,碩士論文,國立成功大學材料科學與工程學系,2004.
【27】A.D.Paola, E.G.Lopez, G.Marci, L.Palmisano, “Review: A survey of photocatalytic materials for environmental remediation”, Journal of Hazardous Materials (2011).
【28】林岳昇,「UV-LED與奈米光觸媒自動殺菌除臭技術應用於民生用品之研究」,碩士論文,北台灣科學技術學院機電整合研究所,2009.
【29】Z. Sen, “Solar Energy Fundamentals and Modeling Techniques, Springer Verlag”, London, 2008.
【30】Michael Gratzel,“Insight review articles:Photoelectrochemical cells”.
【31】F.Dong, H.Wang, G.Sen, Z.Wu, S.C. Lee, “Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air”, Journal of Hazardous Materials. 187 (2011) 509-516.
【32】J.Cao, B.Xu, B.Luo, H.Lin, S.Chen, “Prepared, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2”, Appl. Surf. Sci. 257 (2011) 7983-7089.
【33】D.Robert, “Photosensitization of TiO2 by MxOy nanoparticles for heterogeneous photocatalysis applications”, Catal. Today 122 (2007) 20-26.
【34】W.D. Wang, F.Q. Huang, X.P. Lin, J.H. Yang,“Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI”, Catal. Commun. 9 (2008) 8-12.
【35】P.V.Kamat, D.Meisel,“Nanoscience opportunities in environmental remediation”,C.R. Chimie 6 (2003) 999-1007.
【36】G. Zhu, W.Que, J.Zhang, “Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation”, Journal of Alloys and Compounds 509 (2011) 9479-9486.
【37】S.Chen, L., Chen, S., Gao, G., Cao, “The Preparation of Coupled WO3/TiO2 Photocatalyst by Ball Milling”, Powder Technology, Vol. 160, pp. 198-202, 2005.
【38】A. Martinez Cruz, U.M. Garcia Perez,“Photocatalyst properties of BiVO4 prepared by the co-precipitation method:Degradationof rhodamine B and possible reaction mechanisms under visible irradiation”, Materials Research Bulletin 45 (2010) 135-141.
【39】S. Rana, R.S. Srivastava, M.M. Sorensson, R.D.K. Misra,“Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2-NiFe2O4 system”, Mater. Sci. Eng., B B119 (2005) 144-151.
【40】T.K. Ghorai, D. Dhak, S. Dalai, P. Pramanik, “Preparation and photocatalytic activity of nano-sized nickel molybdate
(NiMoO4) doped bismuth titanate (Bi2Ti4O11) (NMBT) composite”, Journal of Alloys and Compounds 463 (2008) 390–397
【41】Z. Liu, X. Xu, J. Fang, X. Zhu, J. Chu, B. Li , “Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation”, Applied Surface Science 258 (2012) 3771– 3778.
【42】J. Haiyan, D.Hongxing, M.Xue, Z.Lei, D.Jiguang, J.Kemeng, “Morphology-Dependent Photocatalytic Performance of Monoclinic BiVO4 for Methyl Orange Degradation under Visible-Light Irradiation”, Chin. J. Catal., 32 (2011) 939–949.
【43】Z. Qin , Z. Liu, Y. Liu , K. Yang, “Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation”, Catalysis Communications 10 (2009) 1604–1608.
【44】 L. Song, C.Chen, S. Zhang,“Preparation and photocatalytic activity of visible light-sensitive selenium-doped bismuth sulfide”, Powder Technology 207 (2011) 170–174.
【45】B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, “Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions”, Applied Catalysis B: Environmental 99 (2010) 214–221.
【46】Z. Shan, W.Wang, X.Lin, H.Ding, F.Huang,“Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br”, Journal of Solid State Chemistry 181 (2008) 1361– 1366.
【47】J. Guo, B. Ma, A. Yin, K. Fan, W. Dai,“Photodegradation of rhodamine B and 4-chlorphenol using plasmonic photocatalyst of Ag-AgI/Fe3O4 SiO2 magnetic nanoparticle under visible light irradiation”, Appl. Catal., B 101 (2011) 580-586.
【48】J. Hou, S. Jiao, H. Zhu, R.V.Kumar, “Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity”, Journal of Solid State Chemistry 184 (2011) 154–158.
【49】X. Wang, Y. Lin, X. Ding, J. Jiang,“Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles”, Journal of Alloys and Compounds 509 (2011) 6585–6588.
【50】T. Zhou, J. Hu, J. Li,“Er3+ doped bismuth molybdate nanosheets with exposed{0 1 0} facets and enhanced photocatalytic performance”, Applied Catalysis B: Environmental 110 (2011) 221– 230.
【51】M. Gui, W. Zhang, Q. Su, C. Chen,“Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts, ” Journal of Solid State Chemistry 184 (2011) 1977–1982.
【52】S. Alfaro, A. Martinez-de la Cruz,“Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6, and Bi2W2O9 obtained by co-precipitation method”, Applied Catalysis A: General 383 (2010) 128–133.
【53】李佳香,「發光二極體結合改質光觸媒處理室內揮發性有機污染物之研究」,碩士論文,臺灣大學環境工程學研究所,2006.
【54】林志遠,「利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究」,碩士論文,國立中興大學環境工程系,2007.
【55】黃柄橓,「以可見光光觸媒對揮發性有機物之光催化研究」,碩士論文,國立中興大學環境工程系,2008.
【56】林欣熠,「低溫生長光觸媒二氧化鈦於風扇葉片之空氣清淨及保固性研究」,碩士論文,逢甲大學材料科學與工程學系,2009.
【57】李坤原,「RGB LED背光模組之即時色溫控制」,碩士論文,國立成功大學工程科學系,2009.
【58】林彥男,「微米金屬光柵對氮化銦鎵多重量子井發光效率之研究」,碩士論文,國立中央大學光電研究所,2007.
【59】Y.P., Varshni, “Temperature Dependence of the Energy Gap in Semiconductors”, Physica, Vol. 34, pp. 149-154, 1967.
【60】R., Dupuis, M., Krames, “History, Development, and Applications of
High-Brightness Visible Light-Emitting Diodes,” J. Lightwave Technol., Vol. 26, pp. 1154-1171, 2008.
【61】林岳昇,「UV-LED與奈米光觸媒自動殺菌除臭技術應用於民生用品之研究」,碩士論文,北台灣科學技術學院機電整合研究所,2009。
【62】陳昱慎,「具序相脈波調光之LED室內照明研製」,碩士論文,國立高雄應用科技大學電機工程系,2009.
【63】V.I.Nefedov, D.Gati, B.F.Dzhurinskii, N.P Sergushin, Y.V.Salyn, Z. Neorg, Khimii 20, 2307 (1975).
【64】R. Vanwazer, E.Morgan, J. Stc, Inorganic Chemistry, Vol 12, N° 4, (1973)953-955,.
【65】B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov , Y.V. Salyn, Russian Journal of Inorganic Chemistry, Vol 20, (1975)2307-2314.
【66】F. Beguin, I. Rashkov, N. Manolova, R. Benoit , R. Erre, S. Delpeux,“Fullerene core star-like polymers -1.Preparation from fullerenes and monoazidopolyethers”Eur. Polym. J., Vol 34, N°7, ( 1998)905-915.
【67】Y. Y. Tay, S. Li, “Size dependenceof Zn 2p 2/3 binding energy in nanocrystalline ZnO”Appl. Phys. Lett., 88 (2006) 173118.
【68】Fang Duan, Yan Zheng, Liang Liu, Mingqing Chen, Yi Xie,“Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures” Materials Letters 64 (2010) 1566-1569.
【69】H.V. Philipsborn, J. Cryst. Growth 11 (1971) 348.
【70】C.Yan, D.Xuea,C.Yan, “Polyhedral Construction of Hollow ZnO Micro spheres by CO2 Bubble Templates”, Journal of Alloys and Compounds, 431 (2007)241-245.
【71】 X.J.Dai, Y.S.Luo, S.Y.Fu, W.Q.Chen, Y.Li, Solid State Sciences 12 (2010) 637-642.
【72】J. Han, P.Q.Mantas, and A.M.R.Senos,“Defect chemistry and electrical chcaracteristics of undoped and Mn-doped ZnO”, Journal of European Ceramic Society 22, (2002) 49-59.
【73】Strohmeier B.R., Hercules D.M., J. Catal. 86,266 (1984).
【74】汪建民主編,材料分析,「第四版,第十三章 化學分析電子儀分析」,第354~374頁,中國材料科學學會,台北,民全書局,民國94年.
【75】J.Xie,, X.Lu, M.Chen, G.Zhao, Y.Song, S.Lu,“The sunthesis, characterization and photocatalytic activity of V (V), Pb (II), Ag (I) and Co (II)-doped Bi2O3, Dye and pigments”, Vol. 77, (2008)43-47.
【76】F. Leiter, H. Alves, D. Pfisterer, N.G. Romanov, D.M. Hofmann,
B.K.Meyer, “Oxygen vacancies in ZnO”Physica B 340-342 (2003) 201-204.
【77】P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature”, Solid State Communications, 103, (1997), 459.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊