跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪韶男
研究生(外文):HONG,SHAO-NAN
論文名稱:應用光通訊元件之電磁場型偵測探頭研製
論文名稱(外文):Study Of Electromagnetic Field Detecting Probe Using Optical Communication Elements
指導教授:吳松茂
指導教授(外文):WU,SUNG-MAO
口試委員:李仲桓王陳肇
口試委員(外文):LI,CHUNG-HUANWANG,CHEN-CHAO
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:近場量測探頭電磁場探頭射頻傳輸光纖技術電源透過光纖傳輸技術垂直腔面發射雷射元件光伏元件
外文關鍵詞:near-field measurementE-field probeRF-over-FiberPower-over-FiberVCSELPhotovoltaic element
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
現今資訊的快速傳遞,應科技的進步以及奈米化的趨勢,現今科技產品講求體積小、質量輕、操作快速等特點,然而複雜的電子電路聚集在微小的體積裡,複雜的電路,導致電磁波互相干擾(EMI)以及電磁相容(EMC)的問題,所以電磁場型偵測探頭搭配儀器尋找問題與驗證改進效果是有效快速的做法。
傳統的電磁場型偵測探棒大多使用金屬傳輸線做為訊號傳輸的方式,金屬線易產生高溫及金屬線對於電磁訊號產生耦合干擾以及相位偵測等問題,對於量測上產生有許多的限制,因此本論文提出創新之訊號傳輸方式來解決這個問題。因此本論文之探頭設計利用光通訊元件,如:VCSEL、Photodiode、光纖等來取代原有的金屬傳輸線的方式,並且利用光纖傳遞技術傳遞射頻訊號。而探頭端元件的電源供給,利用光伏元件嵌在探頭端上,以光纖將光能量打在光伏元件上,藉以供電並作為探頭啟閉之開關。總結以上論點,本論文提出利用光通訊技術研製新式電磁場型偵測探棒來測得近場的特性及相位,進而推估遠場的電磁場型,不論在空間、成本及量測速度上均有很大的優勢,而這些優勢對於無線通訊產品的開發速度有很大的幫助。

This study proposes a design of near field detecting probe, a low-cost design of a probe system measuring E-field in time-domain with single polarization up to 2.6 GHz. Most probes are designed to measure magnitude only, and typical application is exposure safety assessment. For the sack of RF transparency, optical fiber is used to replace coaxial cable to transmit the signal from the transmitter to receiver. Thus, RF-over-Fiber (RoF) technology is applied for signal transmission. VCSEL and photodiode (PD) act as the transmitter and receiver respectively. The VCSEL is powered via optical fiber with Power-over-Fiber (PoF) technology.
Probes that can detect complex EM fields possess great potential for various applications because the measured fields can be further post-processed into the performance more relevant to the product design. In the future, using this design to obtain near-field to far-field transformation.

中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1電磁場量測問題 1
1.2理論與參考文獻 3
1.2.1磁場探棒與電場探棒 3
1.2.2電磁場探頭相關文獻 4
1.2.3兼顧相位跟透明度的光學晶體探頭(photonic probe)相關文獻 5
1.3論文章節架構 6
第二章 探頭架構與元件選定 7
2.1探頭架構 7
2.2探頭元件選定 8
2.2.1垂直腔面發射雷射元件(VCSEL) 8
2.2.2光伏元件(Photovoltaic element) 10
2.2.3光電二極體(Photodiode,PD) 12
2.2.4高功率雷射(High Power Laser) 12
2.3探頭研製發展過程 13
第三章 近場量測探頭架構收發特性測試 17
3.1 RF-over-Fiber (RoF)電路實驗 17
3.2 Power-over-Fiber (PoF)電路實驗 20
3.2.1第一版PoF電路實驗 20
3.2.2第二版PoF電路實驗 22
3.3光伏元件供電效能評估 23
3.4接收端電路 28
第四章 探頭系統特性整合與驗證 30
4.1 發射端電路耦光 30
4.1.1 TO-Ccan VCSEL的探討 30
4.1.2耦光效率計算與量測 33
4.1.3 TO-Can VCSEL與Bare die VCSEL整合發射端 38
4.2 光纖固定 42
4.2.1第一版光纖治具與夾具設計 42
4.2.2第二版光纖固定之UV膠的使用 43
4.3完整探頭系統與效能 44
4.3.1探頭量測驗證 47
4.3.2批量生產考量 49
第五章 結論與未來展望 51
參考文獻 52

[1]A. Kortke and M. Wieland, "Near field scanning with optoelectronic E-field probes." Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on. IEEE, 2009
[2]P. Bienkowski and H. Trzaska, “Electromagnetic Measurements in the Near Field, Second Edition, ”Institution of Engineering and Technology, 2012.
[3]A. D. Yaghjian, "An overview of near-field antenna measurements," IEEE Transactions on Antennas and Propagation, vol. 34, no. 1, pp. 30-45, Jan. 1986.
[4]H. I. Bassen and G. S. Smith, "Electric field probes--A review," IEEE Transactions on Antennas and Propagation, vol. 31, no. 5, pp. 710-718, Sep. 1983.
[5] M. Kanda, "Standard probes for electromagnetic field measurements," IEEE Transactions on Antennasand Propagation, vol. 41, no. 10, pp. 1349-1364, Oct. 1993.
[6] M. Kanda, L. D. Driver, "An Isotropic Electric-Field Probe with Tapered Resistive Dipoles for Broad-Band Use, 100 kHz to 18 GHz," IEEE Transactions on Microwave Theory and Techniques, vol.35, no. 2, pp. 124-130, Feb. 1987.
[7] V. M. N. Passaro, C. D. Tullio, B. Troia, M. L. Notte, G. Giannoccaro, F. D. Leonardis, “Recent Advances in Integrated Photonic Sensors,” Sensors 2012, 12(11):15558-15598.
[8] Li-Wen Lai, Jia-Yu Liu, Yu-Yung Wu, Sung-Mao Wu and Ming-Chang Fu, " Near-field to Far-field Transformation with Non-contacting Near-field Measurement by Using Kirchhoff Surface Integral Representation," 2015 Asia-Pacific Microwave Conference (APMC), vol.1, pp. 1-3, July.2015.
[9] Petre, P, Sarkar, T.K., “Planar Near-field to Far-field Transformation Using an Equivalent Magnetic Current Approach” Antennas and Propagation, IEEE Trans, Vol.40, no.11, pp.1-9, 1992
[10] Mann, Wieland, et al. "Highly sensitive optoelectronic e-field probes for interference free near field antenna measurements." ITG FACHBERICHT (2003): 343-346.
[11]GP. Bienkowski and H. Trzaska, “Electromagnetic Measurements in the Near Field, Second Edition,” Institution of Engineering and Technology, 2012.
[12] S. Kuehn, F. Bomholt, and N. Kuster. "Miniature electro-optical probe for magnitude, phase and time-domain measurements of radio-frequency magnetic fields." Electromagnetic Compatibility (APEMC), 2010 Asia-Pacific Symposium on. IEEE, 2010.
[13] CTIA, “Test Plan for Mobile Station Over the Air Performance, Method of Measurement for Radiated RF Power and Receiver Performance, ” 2011

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top