跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:艾益安
研究生(外文):Ai, Yi-An
論文名稱:應用於太陽能再生能源具預知式脈波頻率調變之雙模式數位降壓器
論文名稱(外文):A Dual-Mode Digital Buck Converter with Predetermined Pulse-Frequency Modulation for Photovoltaic Energy Harvesting
指導教授:陳柏宏陳柏宏引用關係
指導教授(外文):Chen, Po-Hung
口試委員:吳重雨趙昌博陳柏宏
口試委員(外文):Wu, Chung-YuChao, Chang-PoChen, Po-Hung
口試日期:2015-12-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:79
中文關鍵詞:直流-直流降壓器數位降壓器預知式頻率調變自動負載偵測
外文關鍵詞:DC-DC ConverterDigital converterPredetermined pulse-frequency modulationLoad detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
近年來,隨著穿戴式產品普及化,而太陽能挾其可永續利用且低汙染的特性,迅速成為延長電池使用時間的重要輔助能源,乃至為發展無電池系統中的替代能源。其可應用的範圍包括無線感測器、物聯網以及生醫電子元件。然而為了有效利用有限的太陽能,後端數位電路已廣泛運用低電壓低功耗技術,將電晶體操作於次臨界區。因此,發展低電壓且高效率的電源管理系統已成為目前的趨勢,藉此將太陽能儲電裝置所產生的不穩定電壓轉換為穩定的系統電壓。另外,系統也需在極輕負載時具備夠高的轉換效率,方可使後端電路在待機狀態時最小化能量的消耗,進而延長電池壽命。
  本論文實現一個應用於太陽能再生能源之雙模式數位降壓器,最高轉換效率達90.2%,其輸入電壓設計在太陽能最大功率點0.55~0.7伏,而輸出電壓為0.35~0.5伏數位電路於次臨界導通區域下操作,有效的使用有限的太陽能再生能源。藉由結合數位脈波調變模式以及預知式頻率調變模式,使雙模式數位降壓器涵蓋從50奈安培到30毫安培之負載範圍且從300奈安培到30毫安培有75%以上的效率,亦即在此範圍內降壓器能提供超越相同轉換比下理想線性穩壓器所能提供的最高效率。除此之外,藉由所提出之預感知式頻率調變模式來取代傳統零電流偵測電路,先行計算出下橋功率電晶體開關時間,使用數位機制來減少功率損耗;與傳統方式相比,此架構俱極小的功率消耗,藉此提高系統在極輕載時的轉換效率,並於100奈安培的負載下,提供高出ISSCC作品15.1%的轉換效率。

With the popularity of wearable products, photovoltaic energy harvesting is an attractive method to develop battery-free systems or prolong battery life, such as wireless sensors, biomedical electronics, and the internet of things (IoT). To sustain normal operation with a limited power budget, low-power digital circuits operating in the near/sub-threshold region are widely used in such applications. Therefore, the design of a low-voltage high efficiency buck converter which converts the harvested energy to the regulated output is dispensable. On the top of that, the conversion efficiency under ultra-light load becomes significant to increase system standby time.
In this work, a dual-mode digital buck converter for photovoltaic energy harvesting with a maximum conversion efficiency of 90.2% is proposed. The input voltage (VIN) is targeted at 0.55−1.0V to meet the maximum power point voltages of the photovoltaic cell. The output voltage (VOUT) ranges from 0.35−0.5V, so that near/sub-threshold CMOS digital circuits utilize photovoltaic energy effectively. By integrating digital pulse-width modulation (DPWM) and the proposed predetermined pulse-frequency modulation (PPFM) together, the dual-mode digital buck converter provides wide output range from 100nA to 30mA, while achieving more than 75% efficiency from 300nA to 30mA, that is, in this range the proposed converter provides a high conversion efficiency which is higher than ideal low dropout linear regulator’s under same conversion ratio. In addition, the proposed PPFM calculates the off-time of the power transistor in advance without any zero-current detection circuit, thus reducing the power budget in conventional PFM. Compared with the conventional approaches, the proposed method has a very little power consumption in order to improve the efficiency under ultra-light. Thus, the converter provides a 15.1% higher conversion efficiency than previous work.

Chapter 1 1
Introduction 1
1.1 Energy Harvesting Source 2
1.1.1 Photovoltaic Cell 2
1.1.2 Thermoelectric 4
1.1.3 Piezoelectric 5
1.2 General Voltage Regulators 6
1.2.1 Switched-Capacitor Circuits 6
1.2.2 Linear Low-dropout Regulator 8
1.2.3 Inductive Switching Regulator 9
1.2.4 Comparison 11
1.3 Motivation 12
1.4 Thesis Organization 15
Chapter 2 17
Basic Concept of Switching Regulator 17
2.1 Introduction of DC-DC Converters 17
2.2 Power conversion efficiency 18
2.3 Operation Principle of CCM 21
2.3.1 CCM Operation of DC-DC Converter 21
2.3.2 Pulse-Width Modulation 23
2.4 Operation Principle of DCM 26
2.4.1 DCM Operation of DC-DC Converter 26
2.4.2 Pulse-Frequency Modulation 28
Chapter 3 31
Dual-Mode Digital DC-DC Buck Converter and DPWM Implementation 31
3.1 System Architecture and Design Considerations 31
3.2 Implementation of DPWM Operation 34
3.2.1 Implementation of Digital PLL 37
3.2.2 Implementation of On-chip Switched-capacitor DC-DC Converter 39
Chapter 4 40
Implementation of PPFM Operation 40
4.1 System Architecture of PPFM Operation 40
4.2 Operation Principle and Analysis of Constant On-time/Off-time Operation 43
4.3 Dual On-time Pulse Controller and Bias Generator 50
4.4 Predetermined Off-time Controller 55
4.5 Feed-forward body-biasing technique 59
4.6 Auto Mode Detection and Selection 61
Chapter 5 65
Experimental Results and Conclusion 65
5.1 Experimental Results 65
5.2 Conclusions 72
5.3 Future Work 73
Reference 75

[1] Y. Nakase, S. Hirose, H. Onoda, Y. Ido, Y. Shimizu, T. Oishi, T. Kumamoto, and T. Shimizu, “A 0.5V Start-up 87% Efficiency 0.75mm2 On-Chip Feed-Forward Single-Inductor Dual-Output (SIDO) Boost DC-DC Converter for Battery and Solar Cell Operation Sensor Network Micro-Computer Integration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 323–326, 2012.
[2] I. Laird, and Dylan D.-C. Lu, “High Step-Up DC/DC Topology and MPPT Algorithm for Use with a Thermoelectric Generator,” IEEE Trans Power Electron. (PE), vol. 28, no. 7, pp. 3147–3157, Jul. 2013.
[3] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting,” in IEEE J. Solid-State Circuits (JSSC), vol. 48, no. 4, pp.1031–1041, Apr. 2013.
[4] Y.-K. The, and Philip K. T. Mok, “Design of Transformer-Based Boost Converter for High Internal Resistance Energy Harvesting Sources With 21 mV Self-Startup Voltage and 74% Power Efficiency,” in IEEE J. Solid-State Circuits (JSSC), vol. 49, no. 11, pp.2694–2704, Nov. 2014.
[5] Geffrey K. Ottman, Heath F. Hofmann, Archin C. Bhatt, and George A. Lesieutre, “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply,” IEEE Trans. Power Electron. (PE), vol. 17, no. 5, pp. 669–676, Sep. 2012.
[6] W.-C. Chen, D.-L. Ming, Y.-P. Su, Y.-H. Lee, and K.-H. Chen “A Wide Load Range and High Efficiency Switched-Capacitor DC-DC Converter With Pseudo-Clock Controlled Load-dependent Frequency,” in IEEE transactions on circuits and systems—I: (TCAS-I), VOL. 61, NO. 3, pp. 911–921, Mar. 2014.
[7] Vincent W. Ng, and Seth R. Sanders “A High-Efficiency Wide-Input-Voltage Range Switched Capacitor Point-of-Load DC–DC Converter,” IEEE Trans Power Electron. (PE), vol. 28, no. 9, pp. 4335–4341, Sep. 2013.
[8] H.-P. Le, Seth R. Sanders, and E. Alon “Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters” in IEEE J. Solid-State Circuits (JSSC), vol. 46, no. 9, pp.2120–2131, Nov. 2011.
[9] J. Kim, Philip K. T. Mok, C. Kim " A 0.15V-Input Energy-Harvesting Charge Pump with Switching Body Biasing and Adaptive Dead-Time for Efficiency Improvement," IEEE International Solid-State Circuits Conference, pp. 394-395, Feb. 2014.
[10] B. Maity and P. Mandal “A High Performance Switched Capacitor-Based DC-DC Buck Converter Suitable for Embedded Power Management Applications,” IEEE Trans. VLSI Syst., vol. 20, no. 10, pp. 1880–1885, Oct. 2012.
[11] X. Ming, Z.-k. Zhou, and B. Z. “A Low-Power Ultra-Fast Capacitor-Less LDO With Advanced Dynamic Push-Pull Techniques” IEEE International Conference on VLSI and System-on-Chip, pp. 54–59, Oct. 2011.
[12] M. Al-Shyoukh, H. Lee, and R. Perez, “A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation” in IEEE J. Solid-State Circuits (JSSC), vol. 42, no. 8, pp.1732–1742, Aug. 2007.
[13] Kanago, V. Barry, B. Sprague, I. Cevik, AND S. Ay “A Low Power Maximum Power Point Tracker and Power Management System in 0.5μm CMOS” IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 238–241, Aug. 2012
[14] Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P.-H. Chen, K.Watanabe, M. Takamiya, and T. Sakurai, “0.5-V input digital LDO with 98.7% current efficiency and 2.7- A quiescent current in 65 nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 323–326,.2010,
[15] X. Zhang, P.-H. Chen, Y. Ryu, K. Ishida, Y. Okuma, K. Watanabe, T. Sakurai, and M. Takamiya, “A 0.45-V input on-chip gate boosted (OGB) buck converter in 40-nm CMOS with more than 90% efficiency in load range from 2 W to 50 W,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 194–195, 2012.
[16] X. Zhang, P.-H. Chen, Y. Okuma, K. Ishida,Y. Ryu, K. Watanabe, T. Sakurai, and M. Takamiya, “A 0.6 V Input CCM/DCM Operating Digital Buck Converter in 40 nm CMOS,” in IEEE J. Solid-State Circuits, vol. 49, no. 11, pp.2377–2386, Aug. 2014.
[17] P.-H. Chen, C.-S. Wu, K.-C. Lin "A 50nW-to-10mW Output Power Tri-Mode Digital Buck Converter with Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting," IEEE International Solid-State Circuits Conference, pp. 376-327, Feb. 2015.
[18] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., pp. 92-101, Norwell, MA: Kluwer Academic Publishers, 2001.
[19] Abr,a,m P. Dancy and Anantha P. Chandrakasan “Ultra Low Power Control Circuits fbr PWM Converters” IEEE Power Electronics Specialists Conference, vol. 1, pp. 21–27, 1997.
[20] B. J. Culpepper, H. Suzuki “Switching dc-to-dc converter with discontinuous pulse skipping and continuous operationg modes without external sense resistor” US patent 6,396,252, May 2002.
[21] Majid, et al., “Low power stand-by for switched-mode power supply circuit with burst mode operation,” US patent 5,812,383, Sep. 1998.
[22] J. M. Liu, P. Y. Wang, and T. H. Kuo, “A current-mode DC-DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 869–880, Feb. 2012.
[23] A. Zhao, A. A. Fomani, and W. T. Ng, “One-step digital dead-time correction for DC-DC converters,” in Proc. IEEE Appl. Power Electron. Conf., pp. 132–137, Feb. 2010.
[24] Y. Ramadass, A. P. Chandrakasan, “Minimum Energy Tracking Loop With Embedded DC–DC Converter Enabling Ultra-Low-Voltage Operation Down to 250 mV in 65 nm CMOS,” in IEEE J. Solid-State Circuits, vol. 43, no. 1, pp.256–265, Jan. 2008.
[25] Z. Sun, K. Wai R. Chew,H. Tang, and L. Siek,” Adaptive Gate Switching Control for Discontinuous Conduction Mode DC–DC Converter” IEEE Trans. Power Electronics, vol. 29, pp. 1311–1320, May 2013.
[26] C.-Y. Chiang and C.-L. Chen, “Zero-voltage-switching control for a PWM buck converter under DCM/CCM boundary,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2120–2126, Sep. 2009.
[27] E. Carlson, K. Strunz, and B. Otis, “20 mV Input Boost ConverterWith Efficient Digital Control for Thermoelectric Energy Harvesting” IEEE J. Solid-State Circuits, VOL. 45, NO. 4, pp. 741–750, Apr. 2010
[28] S. Bandyopadhyay, Y. K. Ramadass, and A. P. Chandrakasan, “20 A to 100 mA DC-DC converter with 2.8–4.2 V battery supply for portable applications in 45 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2807–2820, Dec. 2011.
[29] K. Hirairi et al., “13% power reduction in 16b integer unit in 40 nm CMOS by adaptive power supply voltage control with parity-based error prediction and detection (PEPD) and fully integrated digital LDO,” in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 486–487.
[30] P. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, T. Sakurai “A 95-mV Startup Step-Up converter with VTH-Tuned Oscillator by Fixed-Charge Programming and Capacitor Pass-On Scheme,” IEEE International Solid-State Circuit Conference Dig. Tech. Papers, pp. 216-217, Feb. 2011.
[31] S. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blázquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, P. Singh, and M. Goel., “Microwatt embedded processor platform for medical system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 721–730, Apr. 2011.
[32] Y. Ramadass, A. P. Chandrakasan, “Minimum energy tracking loop with embedded DC-DC converter delivering voltages down to 250mV in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 64-65, Feb. 2007
[33] K.-C. Lin, “A Wide Load Range Multi-Mode Digital Buck Converter for Photovoltaic Energy Harvesting,” National Chiao-Tung University, master’s dissertation, Apr. 2015.
[34] Y.-H. Lee, S.-Y. Peng, C.-C. Chiu, C.-H. K.-H. Chen, Y.-H. Lin, S.-W. Wang, T.-Y. Tsai, C.-C. Huang, C.-C. Lee, “A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1018-1030, Apr. 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top