|
References
1. Mokhatab Rafiei, F., S.M. Manzari, and S. Bostanian, Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 2011. 38(8): p. 10210-10217. 2. Chaudhuri, A. and K. De, Fuzzy Support Vector Machine for bankruptcy prediction. Applied Soft Computing, 2011. 11(2): p. 2472-2486. 3. West, D., S. Dellana, and J. Qian, Neural network ensemble strategies for financial decision applications. Computers &; Operations Research, 2005. 32(10): p. 2543-2559. 4. Chen, M.-Y., Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications, 2011. 38(9): p. 11261-11272. 5. Lin, F., D. Liang, and E. Chen, Financial ratio selection for business crisis prediction. Expert Systems with Applications, 2011. 38(12): p. 15094-15102. 6. Wu, D., L. Liang, and Z. Yang, Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis. Socio-Economic Planning Sciences, 2008. 42(3): p. 206-220. 7. Martikainen, T., K. Puhalainen, and P. Yli-Olli, On the industry effects on the classification patterns of financial ratios. Scandinavian Journal of Management, 1994. 10(1): p. 59-68. 8. Achim, M.V., C. Mare, and S.N. Borlea, A Statistical Model of Financial Risk Bankruptcy Applied for Romanian Manufacturing Industry. Procedia Economics and Finance, 2012. 3: p. 132-137. 9. Mironiuc, M. and I.-B. Robu, Empirical Study on the Analysis of the Influence of the Audit Fees and Non Audit Fees Ratio to the Fraud Risk. Procedia - Social and Behavioral Sciences, 2012. 62: p. 179-183. 10. Horrigan, J.O., Some Empirical Bases of Financial Ratio Analysis. The Accounting Review, 1965. 40(3): p. 558-568. 11. Beaver, W.H., Financial Ratios As Predictors of Failure. Journal of Accounting Research, 1966. 4: p. 71-111. 12. Tsai, C.-F., Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion, 2014. 16: p. 46-58. 13. Chen, M.-Y., A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering. Information Sciences, 2013. 220: p. 180-195. 14. Chen, N., et al., Clustering and visualization of bankruptcy trajectory using self-organizing map. Expert Systems with Applications, 2013. 40(1): p. 385-393. 15. De Andrés, J., et al., Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems with Applications, 2011. 38(3): p. 1866-1875. 16. Enke, D., M. Grauer, and N. Mehdiyev, Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks. Procedia Computer Science, 2011. 6: p. 201-206. 17. Huang, S.-C., Integrating spectral clustering with wavelet based kernel partial least square regressions for financial modeling and forecasting. Applied Mathematics and Computation, 2011. 217(15): p. 6755-6764. 18. Karimi, S. and B. Hemmateenejad, Identification of discriminatory variables in proteomics data analysis by clustering of variables. Analytica Chimica Acta, 2013. 767: p. 35-43. 19. Lai, R.K., et al., Evolving and clustering fuzzy decision tree for financial time series data forecasting. Expert Systems with Applications, 2009. 36(2, Part 2): p. 3761-3773. 20. Sun, J. and H. Li, Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 2008. 21(1): p. 1-5. 21. Chen, J.-H., A hybrid knowledge-sharing model for corporate foreign investment in China’s construction market. Expert Systems with Applications, 2012. 39(9): p. 7585-7590. 22. dos Santos, D.S. and A.L.C. Bazzan, Distributed clustering for group formation and task allocation in multiagent systems: A swarm intelligence approach. Applied Soft Computing, 2012. 12(8): p. 2123-2131. 23. Gajawada, S. and D. Toshniwal, Projected Clustering Using Particle Swarm Optimization. Procedia Technology, 2012. 4: p. 360-364. 24. Hsieh, T.-J., H.-F. Hsiao, and W.-C. Yeh, Mining financial distress trend data using penalty guided support vector machines based on hybrid of particle swarm optimization and artificial bee colony algorithm. Neurocomputing, 2012. 82: p. 196-206. 25. Huang, C.-L., et al., Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering. Applied Soft Computing, 2013. 13(9): p. 3864-3872. 26. Shen, W., et al., Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 2011. 24(3): p. 378-385. 27. Tsai, C.-Y. and I.W. Kao, Particle swarm optimization with selective particle regeneration for data clustering. Expert Systems with Applications, 2011. 38(6): p. 6565-6576. 28. Su, M.-C., S.-Y. Su, and Y.-X. Zhao, A swarm-inspired projection algorithm. Pattern Recognition, 2009. 42(11): p. 2764-2786. 29. Wang, Y.-J. and H.-S. Lee, A clustering method to identify representative financial ratios. Information Sciences, 2008. 178(4): p. 1087-1097. 30. Aielli, G.P. and M. Caporin, Variance clustering improved dynamic conditional correlation MGARCH estimators. Computational Statistics &; Data Analysis, (). 31. Aviad, B. and G. Roy, Classification by clustering decision tree-like classifier based on adjusted clusters. Expert Systems with Applications, 2011. 38(7): p. 8220-8228. 32. Pattarin, F., S. Paterlini, and T. Minerva, Clustering financial time series: an application to mutual funds style analysis. Computational Statistics &; Data Analysis, 2004. 47(2): p. 353-372. 33. Wang, Y.-J., A clustering system for data sequence partitioning. Expert Systems with Applications, 2011. 38(1): p. 659-666. 34. Chen, X., et al., A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recognition, 2012. 45(1): p. 434-446. 35. Chen, W.-S. and Y.-K. Du, Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 2009. 36(2, Part 2): p. 4075-4086. 36. Li, H. and J. Sun, Empirical research of hybridizing principal component analysis with multivariate discriminant analysis and logistic regression for business failure prediction. Expert Systems with Applications, 2011. 38(5): p. 6244-6253. 37. Li, H. and J. Sun, Principal component case-based reasoning ensemble for business failure prediction. Information &; Management, 2011. 48(6): p. 220-227. 38. When is a correlation matrix appropriate for factor analysis? Some decision rules. 1974, American Psychological Association: US. p. 358-361. 39. Cerny, B.A. and H.F. Kaiser, A Study Of A Measure Of Sampling Adequacy For Factor-Analytic Correlation Matrices. Multivariate Behavioral Research, 1977. 12(1): p. 43-47. 40. Kaiser, H., A second generation little jiffy. Psychometrika, 1970. 35(4): p. 401-415. 41. Tobias, S. and J.E. Carlson, BRIEF REPORT: BARTLETT'S TEST OF SPHERICITY AND CHANCE FINDINGS IN FACTOR ANALYSIS. Multivariate Behavioral Research, 1969. 4(3): p. 375-377. 42. Cattell, R.B., The Scree Test For The Number Of Factors. Multivariate Behavioral Research, 1966. 1(2): p. 245-276. 43. Thurstone, L.L., Thurstone, L. L. Multiple‐factor analysis. Chicago: University of Chicago Press, 1947, pp. 535. $7.50. Journal of Clinical Psychology, 1947. 4(2): p. 224-224. 44. Lev, B., Industry Averages as Targets for Financial Ratios. Journal of Accounting Research, 1969. 7(2): p. 290-299. 45. Gallizo, J.L., P. Gargallo, and M. Salvador, Multivariate Partial Adjustment of Financial Ratios: A Bayesian Hierarchical Approach. Journal of Applied Econometrics, 2008. 23(1): p. 43-64. 46. Wu, C. and S.-J. Ho, Financial Ratio Adjustment: Industry-Wide Effects or Strategic Management. Review of Quantitative Finance and Accounting, 1997. 9(1): p. 71-88. 47. Davis, H.Z. and Y.C. Peles, Measuring Equilibrating Forces of Financial Ratios. The Accounting Review, 1993. 68(4): p. 725-747. 48. Peles, Y.C. and M.I. Schneller, The Duration of the Adjustment Process of Financial Ratios. The Review of Economics and Statistics, 1989. 71(3): p. 527-532.
|