水山高久。砂防ダムに対する土石流衝撃力算定とその問題点。砂防学会誌,第32期,第1卷,第40-43頁。(1979)。
仲野公章與右近則男。砂質崩土の衝撃力に関する実験。砂防学会誌,第39期,第1卷,第 17-23頁。(1986)。
行政院農業委員會水土保持局。水土保持手冊。南投市。(2017)。
周必凡、胡平華、游勇與程尊蘭。蔣家溝泥石流表面流速公式試驗研究。山地研究,第9期,第3卷,第 171-178頁。(1991)。
林炳森與林基源。土石流之衝擊力與防治工法介紹。地工技術,第74期,第67-80頁。(1999)。
張立憲。土石流特性之探討。中華水土保持學報,第16期,第1卷,第135-141頁。(1985)。
連惠邦與趙世照。溪床堆積土體崩壞模式及其土石流化之研究。中華水土保持學報,第27期,第3卷,第 175-183頁。(1996)。
連惠邦。土砂災害與防治。五南圖書出版股份有限公司,台北市,第432-433頁。(2017)。
游繁結與陳重光。土石流之基礎研究 (II) 土石流流速之初步探討。興大水土保持學報,第21期,第2卷,第115-142頁。(1990)。
王志賢。粗粒材料對土石流流變特性影響之實驗研究。國立成功大學水利及海洋工程研究所,碩士論文。(2000)。王嘉筠。高含砂水流流變與流動特性之試驗研究。國立中興大學土ˋˇ木工程學系,碩士論文。(2008)。王靖。泥流型和礫石型土石流有限元素分析初步探討。國立交通大學土木工程學系,碩士論文。(2013)。Armanini, A., & Scotton, P. On the dynamic impact of a debris flow on structures. In Proceedings Of The Congress-international Association For Hydraulic Research (Vol. 3, pp. 203-203), LOCAL ORGANIZING COMMITTEE OF THE XXV CONGRESS. (1993)
Armanini, A. On the dynamic impact of debris flows. In Recent developments on debris flows (pp. 208-226). Springer, Berlin, Heidelberg. (1997).
Arattano, M., & Franzi, L. J. N. H. On the evaluation of debris flows dynamics by means of mathematical models. Natural Hazards and Earth System Science, 3(6), 539-544, 2003.
Bingham, E. C., & Green, H. Paint, a plastic material and not a viscous liquid; the measurement of its mobility and yield value. In Proc. Am. Soc. Test. Mater (Vol. 19, pp. 640-664). (1919).
Bagnold, R. A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225(1160), 49-63. (1954).
Balmforth, N. J., & Kerswell, R. R. Granular collapse in two dimensions. Journal of Fluid Mechanics, 538, 399-428. (2005).
Badoux, A., Graf, C., Rhyner, J., Kuntner, R., & McArdell, B. W. A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Natural hazards, 49(3), 517-539. (2009).
Bugnion, L., McArdell, B. W., Bartelt, P., & Wendeler, C. Measurements of hillslope debris flow impact pressure on obstacles. Landslides, 9(2), 179-187. (2012).
Cruden, D. M., & Varnes, D. J. Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report. (1996).
Coussot, P., & Meunier, M. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3-4), 209-227. (1996).
Crosta, G. B., Imposimato, S., & Roddeman, D. Numerical modeling of 2‐D granular step collapse on erodible and nonerodible surface. Journal of Geophysical Research: Earth Surface, 114(F3). (2009).
Como, A., & Mahmoud, H. Numerical evaluation of tsunami debris impact loading on wooden structural walls. Engineering Structures, 56, 1249-1261. (2013).
Cui, P., Zeng, C., & Lei, Y. Experimental analysis on the impact force of viscous debris flow. Earth Surface Processes and Landforms, 40(12), 1644-1655. (2015).
Calvetti, F., Di Prisco, C. G., & Vairaktaris, E. DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotechnica, 12(1), 129-144. (2017).
Ceccato, F., Redaelli, I., di Prisco, C., & Simonini, P. Impact forces of granular flows on rigid structures: Comparison between discontinuous (DEM) and continuous (MPM) numerical approaches. Computers and Geotechnics, 103, 201-217. (2018).
Dey, R., Hawlader, B., Phillips, R., & Soga, K. Large deformation finite-element modeling of progressive failure leading to spread in sensitive clay slopes. Géotechnique, 65(8), 657-668. (2015).
Dai, Z., Huang, Y., Cheng, H., & Xu, Q. SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides, 14(3), 917-928. (2017).
Fern, E. J., & Soga, K. Granular column collapse of wet sand. Procedia Engineering, 175, 14-20. (2017).
Herschel, W. H., & Bulkley, R. Konsistenzmessungen von gummi-benzollösungen. Colloid & Polymer Science, 39(4), 291-300. (1926).
Hadush, S., Yashima, A., & Uzuoka, R. Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis. Computers and Geotechnics, 27(3), 199-224. (2000).
Hübl, J., & Holzinger, G. Development of design basis for crest open structures for debris flow management in torrents: miniaturized tests for the efficiency estimation of debris flow breakers. WLS Report. (2003).
Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. Debris flow impact estimation. In Proceedings of the 11th international symposium on water management and hydraulic engineering, Ohrid, Macedonia (pp. 1-5). (2009).
Hibbitt, H., Karlsson, B., & Sorensen, P. Abaqus analysis user’s manual version 6.10. Dassault Systèmes Simulia Corp.: Providence, RI, USA. (2011).
Huang, Y., Zhang, W., Xu, Q., Xie, P., & Hao, L. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides, 9(2), 275-283. (2012).
Hungr, O., Leroueil, S., & Picarelli, L. The Varnes classification of landslide types, an update. Landslides, 11(2), 167-194. (2014).
Hu, P., Wang, D., Stanier, S. A., & Cassidy, M. J. Assessing the punch-through hazard of a spudcan on sand overlying clay. Géotechnique, 65(11), 883-896. (2015).
Iverson, R. M., Logan, M., LaHusen, R. G., & Berti, M. The perfect debris flow? Aggregated results from 28 large‐scale experiments. Journal of Geophysical Research: Earth Surface, 115(F3). (2010).
Johnson, A. M. Physical processes in geology: A method for interpretation of natural phenomena; intrusions in igneous rocks, fractures, and folds, flow of debris and ice. Freeman, Cooper. (1970).
Johnson, A. M., & Rodine, J. R. Debris flow, Slope Instability D. Brunsden, DB Prior, 257–361. (1984).
Krivtsov, A. M., & Kuz’kin, V. A. Derivation of equations of state for ideal crystals of simple structure. Mechanics of solids, 46(3), 387. (2011).
Kerley, G. I. The linear us-up relation in shock-wave physics. arXiv preprint arXiv:1306.6916. (2013).
Khoa, H. D. V., & Jostad, H. P. Application of coupled Eulerian-Lagrangian method to large deformation analyses of offshore foundations and suction anchors. International Journal of Offshore and Polar Engineering, 26(03), 304-314. (2016).
Ko, J., Jeong, S., & Kim, J. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil. Applied Sciences, 7(10), 1080. (2017).
Lichtenhahn, C. Berechnung von sperren in beton und eisenbeton. Mitt Forstl Bundes Versuchsanst Wein. (1973).
Lajeunesse, E., Monnier, J. B., & Homsy, G. M. Granular slumping on a horizontal surface. Physics of fluids, 17(10), 103302. (2005).
Lube, G., Huppert, H. E., Sparks, R. S. J., & Freundt, A. Collapses of two-dimensional granular columns. Physical Review E, 72(4), 041301. (2005).
Li, X., & Zhao, J. Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder technology, 338, 493-505. (2018).
Lin, C. -H., Hung, -C., Hsu, T. -Y. Simulations of granular material behaviors using Coupled Eulerian-Lagrangian approach: From collapse to fluid-structure interaction. Computers and Geotechnics. (Prepared) (2019).
Masters, W. H., & Johnson, V. E. Human sexual inadequacy (Vol. 225). Boston: Little, Brown. (1970).
Matsuoka, H., & Nakai, T. Relationship among tresca, mises, mohr-coulomb and matsuoka-nakai failure criteria. Soils and Foundations, 25(4), 123-128. (1985).
Major, J. J., & Pierson, T. C. Debris flow rheology: Experimental analysis of fine‐grained slurries. Water resources research, 28(3), 841-857. (1992).
Major, J. J. Depositional processes in large-scale debris-flow experiments. The Journal of Geology, 105(3), 345-366. (1997).
Moriguchi, S., Borja, R. I., Yashima, A., & Sawada, K. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotechnica, 4(1), 57-71. (2009).
O'Brien, J. S., & Julien, P. Y. Laboratory analysis of mudflow properties. Journal of hydraulic engineering, 114(8), 877-887. (1988).
Pierson, T. C. Erosion and deposition by debris flows at Mt Thomas, north Canterbury, New Zealand. Earth Surface Processes, 5(3), 227-247. (1980).
Pierson, T. C. Flow behavior of channelized debris flows Mount St. Helens Washington. Hillslope processes, 269-296. (1986).
Pudasaini, S. P., & Hutter, K. Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Science & Business Media. (2007).
Proske, D., Suda, J., & Hübl, J. Debris flow impact estimation for breakers. Georisk, 5(2), 143-155. (2011).
Qian, N., & Dai, D. Z. The problems of river sedimentation and the present status of its research in China. In Proceedings of the International Symposium on River Sedimentation (Vol. 24, No. 29, pp. 19-39). Guanghue Press. (1980).
Qiu, G., Henke, S., & Grabe, J. Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics, 38(1), 30-39. (2011).
Scotton, P., & Deganutti, A. M. Phreatic line and dynamic impact in laboratory debris flow experiments. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 777-786). ASCE. (1997).
Sidle, R. C., & Chigira, M. Landslides and debris flows strike Kyushu, Japan. Eos, Transactions American Geophysical Union, 85(15), 145-151. (2004).
Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., & Proske, D. Analysing debris-flow impact models, based on a small scale modelling approach. Surveys in Geophysics, 34(1), 121-140. (2013).
Shen, W., Zhao, T., Zhao, J., Dai, F., & Zhou, G. G. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses. Engineering Geology, 241, 86-96. (2018).
Takahashi, T. Debris flow. Annual review of fluid mechanics, 13(1), 57-77. (1981).
Tecca, P. R., Galgaro, A., Genevois, R., & Deganutti, A. M. Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy). Hydrological processes, 17(9), 1771-1784. (2003).
Tiberghien, D., Laigle, D., Naaim, M., Thibert, E., & Ousset, F. Experimental investigations of interaction between mudflow and an obstacle. Debris-flow hazards mitigation: mechanics, prediction and assessment, Millpress, Rotterdam. (2007).
Tang, C., Rengers, N. V., Van Asch, T. W., Yang, Y. H., & Wang, G. F. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China. Natural Hazards and Earth System Sciences, 11(11), 2903-2912. (2011).
Utili, S., Zhao, T., & Houlsby, G. T. 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Engineering geology, 186.(2015).
Varnes, D. J. Slope movement types and processes. Special report, 176, 11-33. (1978).
Wang, Z., Larsen, P., & Xiang, W. Rheological properties of sediment suspensions and their implications. Journal of Hydraulic Research, 32(4), 495-516. (1994).
Xu, Q., Zhang, S., Li, W. L., & Van Asch, T. W. The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China. Natural Hazards and Earth System Sciences, 12, 201-216. (2012).
Yano, K., & Daido, A. Fundamental study on mud-flow. (1965).