跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/01 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐采筠
研究生(外文):Tsai-YunHsu
論文名稱:驗證與應用耦合歐拉-拉格朗日技術:以顆粒流試驗為例
論文名稱(外文):Validating and Applying Coupled Eulerian-Lagrangian Technique: Benchmark exercise for characterizing granular flows
指導教授:洪瀞
指導教授(外文):Ching-Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:耦合歐拉-拉格朗日技術顆粒材料顆粒柱崩落模擬顆粒流衝擊模擬
外文關鍵詞:CEL techniquegranular materialgranular column collapsegranular impact simulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
防砂壩為重要的土石流防護設施,在進行防砂壩設計時,工程上經常忽略土石流衝擊力對壩體的影響,然而衝擊力對壩體的安定性至關重要。過去許多專家學者以顆粒流試驗探討顆粒材料對結構體的衝擊力影響,隨著電腦輔助工程分析軟體的進步,有限元素法已被廣泛應用在大地工程上,然而傳統的有限元素法容易在材料大變形區域,發生網格扭曲造成數值解不精確等問題,因此科學家發展了耦合歐拉-拉格朗日(CEL)技術,結合歐拉分析與拉格朗日分析的優點,避免了網格扭曲、畸變等問題。
本文欲以近年來發展的CEL技術,結合Mie-Gruneisen 狀態方程式與賓漢流體模型,探討顆粒材料之動態行為。首先進行顆粒柱崩落模擬,驗證了顆粒柱崩塌至堆積的流動型態,證實組成律模型與 CEL技術對顆粒流動態分析之適用性,並由模擬結果歸納出本研究所選用的組成律模型參數之代表性。接著進行顆粒流衝擊模擬,模擬顆粒材料在不同傾斜角度下撞擊剛性結構體的衝擊力與堆積行為,發現流動速度、流動深度、堆積型態與坡度有關,亦與衝擊力相關,並回歸出不同坡度下擋板的攔砂率,最後將模擬結果與現行經驗公式進行比較,討論了靜態公式、動態公式與CEL模型的準確度,結果表明CEL技術是一個強大的數值模擬分析工具,對於模擬流固耦合問題能有很好的應用。
Granular flows, such as debris and flow-like landslides, have caused increasing catastrophic destructions and casualties worldwide. To deal with hazards associated with granular flows, protection functions of facilities, including impact force, sediment trap, and retention should be carefully evaluated prior to project designs. In this study, a Coupled Eulerian-Lagrangian (CEL) technique was applied to characterize the dynamic behaviors and flow-structure interactions of granular flows. The CEL technique, combining Eulerian and Lagrangian algorithms, is capable of overcoming mesh distortions of conventional FEMs. By calibrating sandbox tests of granular column collapses, the mobility of the granular flow was simulated by combing the equations of state (EOS) and Bingham plastics constitutive models. The correlations of the parameters of various constitutive models were evaluated by simulations of granular column collapses. In addition, the granular impacts were assessed by the CEL technique considering incline angles of 45 to 65 degrees. The impact force simulated by CEL technique was compared with the predictions of empirical formulas, and the retention ratios at different incline angle conditions were also analyzed. Based on the results, the CEL technique is considered applicable for characterizing dynamic behaviors of the granular flows.
摘要 I
誌謝 IX
目錄 X
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2研究動機 2
1.3 研究目的 3
第二章 文獻回顧 5
2.1 土石流 5
2.1.1 土石流定義與特徵 5
2.1.2 土石流種類 6
2.1.3 危害方式 7
2.1.4 防護設施 8
2.2土石流災害引致結構體破壞案例 9
2.3 土石流衝擊力評估 11
2.3.1 現行經驗公式 11
2.3.2 物理試驗 13
2.3.3數值模擬 15
2.4耦合歐拉-拉格朗日技術 (CEL) 17
2.5組成律模型 20
第三章 研究方法 40
3.1 模型建置 40
3.1.1 顆粒柱崩落模型 41
3.1.2 顆粒流衝擊模型 44
3.2 組成律模型參數 45
3.3 正規化幾何參數 46
3.4 模擬之收斂性分析 47
第四章 顆粒柱崩落模擬 55
4.1 模型參數驗證 55
4.2 顆粒流動行為 58
4.3 組成律模型參數對應之大地材料 60
第五章 顆粒流衝擊模擬 69
5.1顆粒流衝擊試驗模擬 69
5.1.1參數組1之模擬結果 69
5.1.2衝擊力之參數敏感度分析 70
5.2顆粒流對擋板之衝擊力 71
5.3流動形態與攔砂率 73
5.3.1 流動型態 73
5.3.2 攔砂比率 75
5.4最大衝擊力之評估 76
5.4.1靜態公式與CEL 模擬之比較 77
5.4.2 動態公式與CEL 模擬之比較 78
第六章 結論與建議 94
參考文獻 97
附錄 103
附錄一、委員意見回覆表 103
水山高久。砂防ダムに対する土石流衝撃力算定とその問題点。砂防学会誌,第32期,第1卷,第40-43頁。(1979)。
仲野公章與右近則男。砂質崩土の衝撃力に関する実験。砂防学会誌,第39期,第1卷,第 17-23頁。(1986)。
行政院農業委員會水土保持局。水土保持手冊。南投市。(2017)。
周必凡、胡平華、游勇與程尊蘭。蔣家溝泥石流表面流速公式試驗研究。山地研究,第9期,第3卷,第 171-178頁。(1991)。
林炳森與林基源。土石流之衝擊力與防治工法介紹。地工技術,第74期,第67-80頁。(1999)。
張立憲。土石流特性之探討。中華水土保持學報,第16期,第1卷,第135-141頁。(1985)。
連惠邦與趙世照。溪床堆積土體崩壞模式及其土石流化之研究。中華水土保持學報,第27期,第3卷,第 175-183頁。(1996)。
連惠邦。土砂災害與防治。五南圖書出版股份有限公司,台北市,第432-433頁。(2017)。
游繁結與陳重光。土石流之基礎研究 (II) 土石流流速之初步探討。興大水土保持學報,第21期,第2卷,第115-142頁。(1990)。
王志賢。粗粒材料對土石流流變特性影響之實驗研究。國立成功大學水利及海洋工程研究所,碩士論文。(2000)。
王嘉筠。高含砂水流流變與流動特性之試驗研究。國立中興大學土ˋˇ木工程學系,碩士論文。(2008)。
王靖。泥流型和礫石型土石流有限元素分析初步探討。國立交通大學土木工程學系,碩士論文。(2013)。
Armanini, A., & Scotton, P. On the dynamic impact of a debris flow on structures. In Proceedings Of The Congress-international Association For Hydraulic Research (Vol. 3, pp. 203-203), LOCAL ORGANIZING COMMITTEE OF THE XXV CONGRESS. (1993)
Armanini, A. On the dynamic impact of debris flows. In Recent developments on debris flows (pp. 208-226). Springer, Berlin, Heidelberg. (1997).
Arattano, M., & Franzi, L. J. N. H. On the evaluation of debris flows dynamics by means of mathematical models. Natural Hazards and Earth System Science, 3(6), 539-544, 2003.
Bingham, E. C., & Green, H. Paint, a plastic material and not a viscous liquid; the measurement of its mobility and yield value. In Proc. Am. Soc. Test. Mater (Vol. 19, pp. 640-664). (1919).
Bagnold, R. A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225(1160), 49-63. (1954).
Balmforth, N. J., & Kerswell, R. R. Granular collapse in two dimensions. Journal of Fluid Mechanics, 538, 399-428. (2005).
Badoux, A., Graf, C., Rhyner, J., Kuntner, R., & McArdell, B. W. A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Natural hazards, 49(3), 517-539. (2009).
Bugnion, L., McArdell, B. W., Bartelt, P., & Wendeler, C. Measurements of hillslope debris flow impact pressure on obstacles. Landslides, 9(2), 179-187. (2012).
Cruden, D. M., & Varnes, D. J. Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report. (1996).
Coussot, P., & Meunier, M. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3-4), 209-227. (1996).
Crosta, G. B., Imposimato, S., & Roddeman, D. Numerical modeling of 2‐D granular step collapse on erodible and nonerodible surface. Journal of Geophysical Research: Earth Surface, 114(F3). (2009).
Como, A., & Mahmoud, H. Numerical evaluation of tsunami debris impact loading on wooden structural walls. Engineering Structures, 56, 1249-1261. (2013).
Cui, P., Zeng, C., & Lei, Y. Experimental analysis on the impact force of viscous debris flow. Earth Surface Processes and Landforms, 40(12), 1644-1655. (2015).
Calvetti, F., Di Prisco, C. G., & Vairaktaris, E. DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotechnica, 12(1), 129-144. (2017).
Ceccato, F., Redaelli, I., di Prisco, C., & Simonini, P. Impact forces of granular flows on rigid structures: Comparison between discontinuous (DEM) and continuous (MPM) numerical approaches. Computers and Geotechnics, 103, 201-217. (2018).
Dey, R., Hawlader, B., Phillips, R., & Soga, K. Large deformation finite-element modeling of progressive failure leading to spread in sensitive clay slopes. Géotechnique, 65(8), 657-668. (2015).
Dai, Z., Huang, Y., Cheng, H., & Xu, Q. SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides, 14(3), 917-928. (2017).
Fern, E. J., & Soga, K. Granular column collapse of wet sand. Procedia Engineering, 175, 14-20. (2017).
Herschel, W. H., & Bulkley, R. Konsistenzmessungen von gummi-benzollösungen. Colloid & Polymer Science, 39(4), 291-300. (1926).
Hadush, S., Yashima, A., & Uzuoka, R. Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis. Computers and Geotechnics, 27(3), 199-224. (2000).
Hübl, J., & Holzinger, G. Development of design basis for crest open structures for debris flow management in torrents: miniaturized tests for the efficiency estimation of debris flow breakers. WLS Report. (2003).
Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. Debris flow impact estimation. In Proceedings of the 11th international symposium on water management and hydraulic engineering, Ohrid, Macedonia (pp. 1-5). (2009).
Hibbitt, H., Karlsson, B., & Sorensen, P. Abaqus analysis user’s manual version 6.10. Dassault Systèmes Simulia Corp.: Providence, RI, USA. (2011).
Huang, Y., Zhang, W., Xu, Q., Xie, P., & Hao, L. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides, 9(2), 275-283. (2012).
Hungr, O., Leroueil, S., & Picarelli, L. The Varnes classification of landslide types, an update. Landslides, 11(2), 167-194. (2014).
Hu, P., Wang, D., Stanier, S. A., & Cassidy, M. J. Assessing the punch-through hazard of a spudcan on sand overlying clay. Géotechnique, 65(11), 883-896. (2015).
Iverson, R. M., Logan, M., LaHusen, R. G., & Berti, M. The perfect debris flow? Aggregated results from 28 large‐scale experiments. Journal of Geophysical Research: Earth Surface, 115(F3). (2010).
Johnson, A. M. Physical processes in geology: A method for interpretation of natural phenomena; intrusions in igneous rocks, fractures, and folds, flow of debris and ice. Freeman, Cooper. (1970).
Johnson, A. M., & Rodine, J. R. Debris flow, Slope Instability D. Brunsden, DB Prior, 257–361. (1984).
Krivtsov, A. M., & Kuz’kin, V. A. Derivation of equations of state for ideal crystals of simple structure. Mechanics of solids, 46(3), 387. (2011).
Kerley, G. I. The linear us-up relation in shock-wave physics. arXiv preprint arXiv:1306.6916. (2013).
Khoa, H. D. V., & Jostad, H. P. Application of coupled Eulerian-Lagrangian method to large deformation analyses of offshore foundations and suction anchors. International Journal of Offshore and Polar Engineering, 26(03), 304-314. (2016).
Ko, J., Jeong, S., & Kim, J. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil. Applied Sciences, 7(10), 1080. (2017).
Lichtenhahn, C. Berechnung von sperren in beton und eisenbeton. Mitt Forstl Bundes Versuchsanst Wein. (1973).
Lajeunesse, E., Monnier, J. B., & Homsy, G. M. Granular slumping on a horizontal surface. Physics of fluids, 17(10), 103302. (2005).
Lube, G., Huppert, H. E., Sparks, R. S. J., & Freundt, A. Collapses of two-dimensional granular columns. Physical Review E, 72(4), 041301. (2005).
Li, X., & Zhao, J. Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder technology, 338, 493-505. (2018).
Lin, C. -H., Hung, -C., Hsu, T. -Y. Simulations of granular material behaviors using Coupled Eulerian-Lagrangian approach: From collapse to fluid-structure interaction. Computers and Geotechnics. (Prepared) (2019).
Masters, W. H., & Johnson, V. E. Human sexual inadequacy (Vol. 225). Boston: Little, Brown. (1970).
Matsuoka, H., & Nakai, T. Relationship among tresca, mises, mohr-coulomb and matsuoka-nakai failure criteria. Soils and Foundations, 25(4), 123-128. (1985).
Major, J. J., & Pierson, T. C. Debris flow rheology: Experimental analysis of fine‐grained slurries. Water resources research, 28(3), 841-857. (1992).
Major, J. J. Depositional processes in large-scale debris-flow experiments. The Journal of Geology, 105(3), 345-366. (1997).
Moriguchi, S., Borja, R. I., Yashima, A., & Sawada, K. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotechnica, 4(1), 57-71. (2009).
O'Brien, J. S., & Julien, P. Y. Laboratory analysis of mudflow properties. Journal of hydraulic engineering, 114(8), 877-887. (1988).
Pierson, T. C. Erosion and deposition by debris flows at Mt Thomas, north Canterbury, New Zealand. Earth Surface Processes, 5(3), 227-247. (1980).
Pierson, T. C. Flow behavior of channelized debris flows Mount St. Helens Washington. Hillslope processes, 269-296. (1986).
Pudasaini, S. P., & Hutter, K. Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Science & Business Media. (2007).
Proske, D., Suda, J., & Hübl, J. Debris flow impact estimation for breakers. Georisk, 5(2), 143-155. (2011).
Qian, N., & Dai, D. Z. The problems of river sedimentation and the present status of its research in China. In Proceedings of the International Symposium on River Sedimentation (Vol. 24, No. 29, pp. 19-39). Guanghue Press. (1980).
Qiu, G., Henke, S., & Grabe, J. Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics, 38(1), 30-39. (2011).
Scotton, P., & Deganutti, A. M. Phreatic line and dynamic impact in laboratory debris flow experiments. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 777-786). ASCE. (1997).
Sidle, R. C., & Chigira, M. Landslides and debris flows strike Kyushu, Japan. Eos, Transactions American Geophysical Union, 85(15), 145-151. (2004).
Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., & Proske, D. Analysing debris-flow impact models, based on a small scale modelling approach. Surveys in Geophysics, 34(1), 121-140. (2013).
Shen, W., Zhao, T., Zhao, J., Dai, F., & Zhou, G. G. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses. Engineering Geology, 241, 86-96. (2018).
Takahashi, T. Debris flow. Annual review of fluid mechanics, 13(1), 57-77. (1981).
Tecca, P. R., Galgaro, A., Genevois, R., & Deganutti, A. M. Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy). Hydrological processes, 17(9), 1771-1784. (2003).
Tiberghien, D., Laigle, D., Naaim, M., Thibert, E., & Ousset, F. Experimental investigations of interaction between mudflow and an obstacle. Debris-flow hazards mitigation: mechanics, prediction and assessment, Millpress, Rotterdam. (2007).
Tang, C., Rengers, N. V., Van Asch, T. W., Yang, Y. H., & Wang, G. F. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China. Natural Hazards and Earth System Sciences, 11(11), 2903-2912. (2011).
Utili, S., Zhao, T., & Houlsby, G. T. 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Engineering geology, 186.(2015).
Varnes, D. J. Slope movement types and processes. Special report, 176, 11-33. (1978).
Wang, Z., Larsen, P., & Xiang, W. Rheological properties of sediment suspensions and their implications. Journal of Hydraulic Research, 32(4), 495-516. (1994).
Xu, Q., Zhang, S., Li, W. L., & Van Asch, T. W. The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China. Natural Hazards and Earth System Sciences, 12, 201-216. (2012).
Yano, K., & Daido, A. Fundamental study on mud-flow. (1965).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top